DOI QR코드

DOI QR Code

Effects of daily quercetin-rich supplementation on cardiometabolic risks in male smokers

  • Lee, Kyung-Hea (Department of Food and Nutrition, Changwon National University) ;
  • Park, Eun-Ju (Department of Food and Nutrition, Kyungnam University) ;
  • Lee, Hye-Jin (Department of Food and Nutrition, Changwon National University) ;
  • Kim, Myeong-Ok (Department of Food and Nutrition, Changwon National University) ;
  • Cha, Yong-Jun (Department of Food and Nutrition, Changwon National University) ;
  • Kim, Jung-Mi (Department of Food and Nutrition, Kyungnam University) ;
  • Lee, Hye-Ran (Department of Food and Nutrition, Korea University) ;
  • Shin, Min-Jeong (Department of Food and Nutrition, Korea University)
  • Received : 2010.10.12
  • Accepted : 2011.01.06
  • Published : 2011.02.28

Abstract

Limited information from human studies indicates that dietary quercetin supplementation influences blood lipid profiles, glycemic response, and inflammatory status, collectively termed cardiometabolic risks. We tested the hypothesis that quercetin-rich supplementation, derived from onion peel extract, improves cardiometabolic risk components in healthy male smokers in a randomized, double blinded, placebo-controlled parallel design. Randomly assigned subjects were instructed to take either the placebo (n=43) or 100 mg quercetin capsules each day (n=49) for 10 weeks. Anthropometric parameters and blood pressure were measured, and blood lipids, glucose, interleukin-6, and soluble vascular cell adhesion molecule-1 (sVCAM-1) were determined at baseline and after 10 weeks of quercetin supplementation. Quercetin-rich supplementation significantly reduced serum concentrations of total cholesterol (P<0.05) and LDL-cholesterol (P<0.01), whereas these effects were not shown in the placebo group. Furthermore, significant increases were observed in serum concentrations of HDL-cholesterol both in the placebo (P<0.005) and quercetin-rich supplementation group (P<0.001); however, changes in HDL-cholesterol were significantly greater in subjects receiving quercetin-rich supplementation than the placebo. Both systolic (P<0.05) and diastolic blood pressure (P<0.01) decreased significantly in the quercetin-rich supplementation group. Glucose concentrations decreased significantly after 10 weeks of quercetin-rich supplementation (P<0.05). In contrast, no effects of quercetin-rich supplementation were observed for the inflammatory markers-IL-6 and sVCAM-1. Daily quercetin-rich supplementation from onion peel extract improved blood lipid profiles, glucose, and blood pressure, suggesting a beneficial role for quercetin as a preventive measure against cardiovascular risk.

Keywords

References

  1. Knekt P, Jarvinen R, Reunanen A, Maatela J. Flavonoid intake and coronary mortality in Finland: a cohort study. BMJ 1996; 312:478-81. https://doi.org/10.1136/bmj.312.7029.478
  2. Geleijnse JM, Launer LJ, Van der Kuip DA, Hofman A, Witteman JC. Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam Study. Am J Clin Nutr 2002;75:880-6.
  3. Sesso HD, Gaziano JM, Buring JE, Hennekens CH. Coffee and tea intake and the risk of myocardial infarction. Am J Epidemiol 1999;149:162-7. https://doi.org/10.1093/oxfordjournals.aje.a009782
  4. Arts IC, Hollman PC. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 2005;81:317S-325S.
  5. Erdman JW Jr, Balentine D, Arab L, Beecher G, Dwyer JT, Folts J, Harnly J, Hollman P, Keen CL, Mazza G, Messina M, Scalbert A, Vita J, Williamson G, Burrowes J. Flavonoids and heart health: proceedings of the ILSI North America Flavonoids Workshop, May 31-June 1, 2005, Washington, DC. J Nutr 2007; 137:718S-737S.
  6. Formica JV, Regelson W. Review of the biology of Quercetin and related bioflavonoids. Food Chem Toxicol 1995;33:1061-80. https://doi.org/10.1016/0278-6915(95)00077-1
  7. Cai Q, Rahn RO, Zhang R. Dietary flavonoids, quercetin, luteolin and genistein, reduce oxidative DNA damage and lipid peroxidation and quench free radicals. Cancer Lett 1997;119:99-107. https://doi.org/10.1016/S0304-3835(97)00261-9
  8. Duthie SJ, Collins AR, Duthie GG, Dobson VL. Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage (strand breaks and oxidized pyrimidines) in human lymphocytes. Mutat Res 1997;393:223-31. https://doi.org/10.1016/S1383-5718(97)00107-1
  9. Noroozi M, Angerson WJ, Lean ME. Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. Am J Clin Nutr 1998;67:1210-8.
  10. Odbayar TO, Badamhand D, Kimura T, Takashi Y, Tsushida T, Ide T. Comparative studies of some phenolic compounds (quercetin, rutin, and ferulic acid) affecting hepatic fatty acid synthesis in mice. J Agric Food Chem 2006;54:8261-5. https://doi.org/10.1021/jf061135c
  11. Kamada C, da Silva EL, Ohnishi-Kameyama M, Moon JH, Terao J. Attenuation of lipid peroxidation and hyperlipidemia by quercetin glucoside in the aorta of high cholesterol-fed rabbit. Free Radic Res 2005;39:185-94. https://doi.org/10.1080/10715760400019638
  12. Igarashi K, Ohmuma M. Effects of isorhamnetin, rhamnetin, and quercetin on the concentrations of cholesterol and lipoperoxide in the serum and liver and on the blood and liver antioxidative enzyme activities of rats. Biosci Biotechnol Biochem 1995;59: 595-601. https://doi.org/10.1271/bbb.59.595
  13. Duarte J, Perez-Palencia R, Vargas F, Ocete MA, Perez-Vizcaino F, Zarzuelo A, Tamargo J. Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br J Pharmacol 2001;133:117-24. https://doi.org/10.1038/sj.bjp.0704064
  14. Manjeet K R, Ghosh B. Quercetin inhibits LPS-induced nitric oxide and tumor necrosis factor-alpha production in murine macrophages. Int J Immunopharmacol 1999;21:435-43. https://doi.org/10.1016/S0192-0561(99)00024-7
  15. Nair MP, Mahajan S, Reynolds JL, Aalinkeel R, Nair H, Schwartz SA, Kandaswami C. The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-kappa beta system. Clin Vaccine Immunol 2006;13:319-28. https://doi.org/10.1128/CVI.13.3.319-328.2006
  16. Hubbard GP, Stevens JM, Cicmil M, Sage T, Jordan PA, Williams CM, Lovegrove JA, Gibbins JM. Quercetin inhibits collagen-stimulated platelet activation through inhibition of multiple components of the glycoprotein VI signaling pathway. J Thromb Haemost 2003;1:1079-88. https://doi.org/10.1046/j.1538-7836.2003.00212.x
  17. Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 2005;81:243S-255S.
  18. Ministry of Health & Welfare. Korean food composition table. Seoul: 1996.
  19. National Rural Living Science Institute. Food composition table, 5th Revision. Suwon: 1996.
  20. Kirk EP, Klein S. Pathogenesis and pathophysiology of the cardiometabolic syndrome. J Clin Hypertens (Greenwich) 2009; 11:761-5. https://doi.org/10.1111/j.1559-4572.2009.00054.x
  21. Wilson PW, Meigs JB. Cardiometabolic risk: a Framingham perspective. Int J Obes (Lond) 2008;32 Suppl 2:S17-20.
  22. Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, Aromaa A. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 2002;76:560-8.
  23. Gnoni GV, Paglialonga G, Siculella L. Quercetin inhibits fatty acid and triacylglycerol synthesis in rat-liver cells. Eur J Clin Invest 2009;39:761-8. https://doi.org/10.1111/j.1365-2362.2009.02167.x
  24. Glasser G, Graefe EU, Struck F, Veit M, Gebhardt R. Comparison of antioxidative capacities and inhibitory effects on cholesterol biosynthesis of quercetin and potential metabolites. Phytomedicine 2002;9:33-40. https://doi.org/10.1078/0944-7113-00080
  25. Lee KH, Kim YH, Park EJ, Cho SR. Study on dietary habit and effect of onion powder supplementation on serum lipid levels in early diagnosed hyperlipidemic patients. J Korean Soc Food Sci Nutr 2008;37:561-70. https://doi.org/10.3746/jkfn.2008.37.5.561
  26. Castilla P, Echarri R, Davalos A, Cerrato F, Ortega H, Teruel JL, Lucas MF, Gomez-Coronado D, Ortuno J, Lasuncion MA. Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. Am J Clin Nutr 2006;84:252-62.
  27. Zern TL, Wood RJ, Greene C, West KL, Liu Y, Aggarwal D, Shachter NS, Fernandez ML. Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. J Nutr 2005;135: 1911-7.
  28. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 2000; 130:2243-50.
  29. Egert S, Wolffram S, Bosy-Westphal A, Boesch-Saadatmandi C, Wagner AE, Frank J, Rimbach G, Mueller MJ. Daily quercetin supplementation dose-dependently increases plasma quercetin concentrations in healthy humans. J Nutr 2008;138:1615-21.
  30. Conquer JA, Maiani G, Azzini E, Raguzzini A, Holub BJ. Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects. J Nutr 1998;128:593-7.
  31. Egert S, Bosy-Westphal A, Seiberl J, Kurbitz C, Settler U, Plachta-Danielzik S, Wagner AE, Frank J, Schrezenmeir J, Rimbach G, Wolffram S, Muller MJ. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr 2009;102:1065-74. https://doi.org/10.1017/S0007114509359127
  32. DeMarini DM. Genotoxicity of tobacco smoke and tobacco condensate: a review. Mutat Res 2004;567:447-74. https://doi.org/10.1016/j.mrrev.2004.02.001
  33. Talukder MA, Johnson WM, Varadharaj S, Lian J, Kearns PN, El-Mahdy MA, Liu X, Zweier JL. Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. Am J Physiol Heart Circ Physiol 2011;300:H388-96. https://doi.org/10.1152/ajpheart.00868.2010
  34. Ministry of Health and Social Welfare. The Korea National Health & Nutrition Examination Survey Report. Seoul: 2008.
  35. Tonstad S, Andrew Johnston J. Cardiovascular risks associated with smoking: A review for clinicians. Eur J Cardiovasc Prev Rehabil 2006;13:507-14. https://doi.org/10.1097/01.hjr.0000214609.06738.62
  36. Jalili T, Carlstrom J, Kim S, Freeman D, Jin H, Wu TC, Litwin SE, Symons JD. Quercetin-supplemented diets lower blood pressure and attenuate cardiac hypertrophy in rats with aortic constriction. J Cardiovasc Pharmacol 2006;47:531-41. https://doi.org/10.1097/01.fjc.0000211746.78454.50
  37. Garcia-Saura MF, Galisteo M, Villar IC, Bermejo A, Zarzuelo A, Vargas F, Duarte J. Effects of chronic quercetin treatment in experimental renovascular hypertension. Mol Cell Biochem 2005; 270:147-55. https://doi.org/10.1007/s11010-005-4503-0
  38. Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T. Quercetin reduces blood pressure in hypertensive subjects. J Nutr 2007;137:2405-11.
  39. Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol Res 2005; 51:117-23. https://doi.org/10.1016/j.phrs.2004.06.002
  40. Oberley LW. Free radicals and diabetes. Free Radic Biol Med 1988;5:113-24. https://doi.org/10.1016/0891-5849(88)90036-6
  41. Rivera L, Moron R, Sanchez M, Zarzuelo A, Galisteo M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring) 2008;16:2081-7. https://doi.org/10.1038/oby.2008.315

Cited by

  1. Prevention and treatment of alopecia areata with quercetin in the C3H/HeJ mouse model vol.17, pp.2, 2012, https://doi.org/10.1007/s12192-011-0305-3
  2. Protective effect of dietary flavonoid quercetin against lipemic-oxidative hepatic injury in hypercholesterolemic rats vol.50, pp.8, 2012, https://doi.org/10.3109/13880209.2012.655424
  3. Onion peel tea ameliorates obesity and affects blood parameters in a mouse model of high-fat-diet-induced obesity vol.7, pp.2, 2013, https://doi.org/10.3892/etm.2013.1433
  4. Acute effects of an oral supplement of (−)-epicatechin on postprandial fat and carbohydrate metabolism in normal and overweight subjects vol.5, pp.3, 2014, https://doi.org/10.1039/c3fo60416k
  5. -Induced Inhibition of Gap-Junctional Intercellular Communication is Mediated through Quercetin vol.79, pp.5, 2014, https://doi.org/10.1111/1750-3841.12440
  6. Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: a randomised double-blinded placebo-controlled cross-over trial vol.114, pp.08, 2015, https://doi.org/10.1017/S0007114515002950
  7. Antioxidative Activity of Onion Peel Extract in Obese Women: A Randomized, Double-blind, Placebo Controlled Study vol.20, pp.3, 2015, https://doi.org/10.15430/JCP.2015.20.3.202
  8. Cardioprotective Efficacy of Red Wine Extract of Onion in Healthy Hypercholesterolemic Subjects vol.30, pp.3, 2015, https://doi.org/10.1002/ptr.5537
  9. Comparison of the urinary excretion of quercetin glycosides from red onion and aglycone from dietary supplements in healthy subjects: a randomized, single-blinded, cross-over study vol.6, pp.5, 2015, https://doi.org/10.1039/C5FO00155B
  10. Hypocholesterolemic Efficacy of Quercetin Rich Onion Juice in Healthy Mild Hypercholesterolemic Adults: A Pilot Study vol.70, pp.4, 2015, https://doi.org/10.1007/s11130-015-0507-4
  11. Role of dietary phenols in mitigating microglia-mediated neuroinflammation vol.18, pp.3, 2016, https://doi.org/10.1007/s12017-016-8430-x
  12. Quercetin metabolism by fecal microbiota from healthy elderly human subjects vol.12, pp.11, 2017, https://doi.org/10.1371/journal.pone.0188271
  13. No effects of quercetin from onion skin extract on serum leptin and adiponectin concentrations in overweight-to-obese patients with (pre-)hypertension: a randomized double-blinded, placebo-controlled crossover trial vol.56, pp.7, 2017, https://doi.org/10.1007/s00394-016-1267-0
  14. Effects of quercetin supplementation on lipid profile: A systematic review and meta-analysis of randomized controlled trials vol.57, pp.4, 2017, https://doi.org/10.1080/10408398.2014.948609
  15. Cholesterol-Lowering Activity of Tartary Buckwheat Protein vol.65, pp.9, 2017, https://doi.org/10.1021/acs.jafc.7b00066
  16. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.) vol.8, pp.1664-462X, 2017, https://doi.org/10.3389/fpls.2017.02098
  17. Impact of Flavonols on Cardiometabolic Biomarkers:  A Meta‐Analysis of Randomized Controlled Human  Trials to Explore the Role of Inter‐Individual  Variability vol.9, pp.2, 2017, https://doi.org/10.3390/nu9020117
  18. Chemical characterization and functional properties of selected leafy vegetables for innovative mixed salads pp.01458884, 2017, https://doi.org/10.1111/jfbc.12461
  19. Polyphenols and their benefits: A review pp.1532-2386, 2017, https://doi.org/10.1080/10942912.2017.1354017
  20. Aortic Relaxant Activity of Crataegus gracilior Phipps and Identification of Some of Its Chemical Constituents vol.19, pp.12, 2014, https://doi.org/10.3390/molecules191220962
  21. Acute effects of quercetin-3-O-glucoside on endothelial function and blood pressure: a randomized dose-response study vol.104, pp.1, 2016, https://doi.org/10.3945/ajcn.116.131268
  22. Effects of Quercetin on Blood Pressure: A Systematic Review and Meta‐Analysis of Randomized Controlled Trials vol.5, pp.7, 2016, https://doi.org/10.1161/JAHA.115.002713
  23. LDL Oxidation vol.2018, pp.1741-4288, 2018, https://doi.org/10.1155/2018/1049234
  24. 고지방 섭취 흰쥐에서 양파 껍질 추출물의 보충 섭취가 혈중 지질농도와 혈행 개선에 미치는 효과 vol.24, pp.3, 2011, https://doi.org/10.9799/ksfan.2011.24.3.442
  25. Quercetin Up‐regulates LDL Receptor Expression in HepG2 Cells vol.26, pp.11, 2011, https://doi.org/10.1002/ptr.4646
  26. Chronic Intake of Onion Extract Containing Quercetin Improved Postprandial Endothelial Dysfunction in Healthy Men vol.32, pp.3, 2013, https://doi.org/10.1080/07315724.2013.797858
  27. Effect of onion flavonoids on colorectal cancer with hyperlipidemia: an in vivo study vol.7, pp.None, 2014, https://doi.org/10.2147/ott.s51835
  28. Antiartherosclerotic Effects of Plant Flavonoids vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/480258
  29. Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking vol.9, pp.None, 2011, https://doi.org/10.2147/dddt.s86705
  30. Comparative Effect of Quercetin and Quercetin‐3‐O‐β‐d‐Glucoside on Fibrin Polymers, Blood Clots, and in Rodent Models vol.30, pp.11, 2016, https://doi.org/10.1002/jbt.21822
  31. Relationship Linking Dietary Quercetin and Roughage to Concentrate Ratio in Feed Utilization, Ruminal Fermentation Traits and Immune Responses in Korean Indigenous Goats vol.37, pp.1, 2011, https://doi.org/10.5333/kgfs.2017.37.1.10
  32. Original paper: A new type of polyphenols-containing dietary supplement for correction of lipids and inflammatory markers in patients with coronary artery disease vol.24, pp.1, 2011, https://doi.org/10.2478/semcard-2018-0004
  33. Dietary Composition and Cardiovascular Risk: A Mediator or a Bystander? vol.10, pp.12, 2018, https://doi.org/10.3390/nu10121912
  34. VERIFICATION OF AUTHENTICITY OF GINKGO BILOBA L. LEAF EXTRACT AND ITS PRODUCTS PRESENT ON THE CROATIAN MARKET BY ANALYSIS OF QUANTITY AND RATIO OF GINKGO FLAVONE GLYCOSIDES (QUERCETIN, KAEMPFEROL AN vol.58, pp.None, 2011, https://doi.org/10.20471/acc.2019.58.04.15
  35. Clinical effectiveness of quercetin supplementation in the management of weight loss: a pooled analysis of randomized controlled trials vol.12, pp.None, 2019, https://doi.org/10.2147/dmso.s199830
  36. Cardiovascular Effects of Flavonoids vol.26, pp.39, 2011, https://doi.org/10.2174/0929867326666181220094721
  37. Effects of quercetin supplementation on glycemic control among patients with metabolic syndrome and related disorders: A systematic review and meta‐analysis of randomized controlled trials vol.33, pp.5, 2011, https://doi.org/10.1002/ptr.6334
  38. Allium porrum Extract Decreases Effector Cell Degranulation and Modulates Airway Epithelial Cell Function vol.11, pp.6, 2019, https://doi.org/10.3390/nu11061303
  39. Quercetin, a Promising Clinical Candidate for The Prevention of Contrast-Induced Nephropathy vol.20, pp.19, 2011, https://doi.org/10.3390/ijms20194961
  40. A Unique Formulation of Cardioprotective Bio-Actives: An Overview of Their Safety Profile vol.6, pp.4, 2011, https://doi.org/10.3390/medicines6040107
  41. Randomised clinical trial to determine the safety of quercetin supplementation in patients with chronic obstructive pulmonary disease vol.7, pp.1, 2011, https://doi.org/10.1136/bmjresp-2018-000392
  42. Modulation of Chronic Inflammation by Quercetin: The Beneficial Effects on Obesity vol.13, pp.None, 2011, https://doi.org/10.2147/jir.s228361
  43. Therapeutic Potential of Quercetin as an Antiatherosclerotic Agent in Atherosclerotic Cardiovascular Disease: A Review vol.2020, pp.None, 2011, https://doi.org/10.1155/2020/5926381
  44. Impact of quercetin on systemic levels of inflammation: a meta-analysis of randomised controlled human trials vol.71, pp.2, 2011, https://doi.org/10.1080/09637486.2019.1627515
  45. Dietary polyphenols as antidiabetic agents: Advances and opportunities vol.1, pp.1, 2011, https://doi.org/10.1002/fft2.15
  46. Layer-by-Layer Deposition of Hyaluronan and Quercetin-Loaded Chitosan Nanoparticles onto Titanium for Improving Blood Compatibility vol.10, pp.3, 2020, https://doi.org/10.3390/coatings10030256
  47. The effects of quercetin supplementation on lipid profiles and inflammatory markers among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized co vol.60, pp.11, 2011, https://doi.org/10.1080/10408398.2019.1604491
  48. Minieditorial: Quercetina Melhora o Perfil Lipídico e Apolipoproteico em Ratos Tratados com Glicocorticoides em Altas Doses vol.115, pp.1, 2011, https://doi.org/10.36660/abc.20200461
  49. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: a systematic review and meta-analysis vol.78, pp.8, 2011, https://doi.org/10.1093/nutrit/nuz071
  50. Allium Flavonols: Health Benefits, Molecular Targets, and Bioavailability vol.9, pp.9, 2011, https://doi.org/10.3390/antiox9090888
  51. Quercetin supplementation in non-alcoholic fatty liver disease : A randomized, double-blind, placebo-controlled clinical trial vol.50, pp.6, 2011, https://doi.org/10.1108/nfs-10-2019-0321
  52. Amelioration of Diabetes-Induced Nephropathy by Loranthus regularis: Implication of Oxidative Stress, Inflammation and Hyperlipidaemia vol.11, pp.10, 2021, https://doi.org/10.3390/app11104548
  53. Effect of onion on blood lipid profile: A meta‐analysis of randomized controlled trials vol.9, pp.7, 2021, https://doi.org/10.1002/fsn3.2309
  54. Quercetin and metabolic syndrome: A review vol.35, pp.10, 2021, https://doi.org/10.1002/ptr.7144