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Word-Based FCSRs with Fast Software Implementations

Dong Hoon Lee and Sangwoo Park

Abstract: Feedback with carry shift registers (FCSRs) over 2-adic
number would be suitable in hardware implementation, but they
are not efficient in software implementation since their basic unit
(the size of register cells) is 1-bit. In order to improve the efficiency
we consider FCSRs over 2%-adic number (i.e., FCSRs with regis-
ter cells of size /-bit) that produce / bits at every clocking where
£ will be taken as the size of normal words in modern CPUs (e.g.,
£ = 32). But, it is difficult to deal with the carry that happens when
the size of summation results exceeds that of normal words. We
may use long variables (declared with ‘unsigned __inté64’
or ‘unsigned long long’)or conditional operators (such as
‘i £’ statement) to handle the carry, but both the arithmetic oper-
ators over long variables and the conditional operators are not ef-
ficient comparing with simple arithmetic operators (such as shifts,
maskings, xors, modular additions, etc.) over variables of size £-bit.
In this paper, we propose some conditions for FCSRs over 2%-adic
number which admit fast software implementations using only sim-
ple operators. Moreover, we give two implementation examples for
the FCSRs. Our simulation result shows that the proposed meth-
ods are twice more efficient than usual methods using conditional
operators.

Index Terms: Feedback with carry shift register (FCSR), software
implementation, stream cipher.

I. INTRODUCTION

In general the component of stream ciphers consists of two
parts: One is to generate long sequences and the other is to pro-
duce a key stream from the sequences. At least one of the two
components should have a nonlinear property to resist several
attacks and cryptanalyses. Classical stream ciphers are based on
linear feedback shift registers (LFSRs) as a function of generat-
ing long sequences. However, most LFSR-based stream ciphers
are vulnerable to recent algebraic attacks [1]-[3]. Hence, there
have been many efforts to apply nonlinear feedback shift regis-
ters (NFSRs) to stream ciphers.

Feedback with carry shift registers (FCSRs) were introduced
by Klapper and Goresky in {4] and [5]. FCSRs can be regarded
as LFSRs with ordinary addition over the integer ring with mem-
ory for storing the carry instead of addition over F5. The prop-
erties of FCSRs are also analogous to those of LFSRs, but based
on 2-adic number rather than power series over Fy. FCSRs over
2-adic number were extended to FCSRs over ramified exten-
sions and finite fields, respectively {6], [7]. As noticed in [5],
FCSRs over 2-adic integers can be straightforwardly general-
ized to FCSRs over p-adic integers where p is a prime number.

Unfortunately, the above FCSRs do not have efficient soft-
ware implementations yet. For example, the original FCSRs and
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their variants update their register cells bit-by-bit and output one
bit at every clocking since the size of the register cells is one bit.
On the other hand, they may be suitable for hardware implemen-
tation,

In software implementation, we can extend the size of regis-
ter cells from 1-bit to #-bit where / is the size of normal words
in the given CPU (e.g., £ = 32) to produce £ bits at every clock-
ing. Such FCSRs may be regarded as FCSRs over b-adic num-
ber where b = 2¢. Here, b-adic number is denoted by a formal
power series with base b. This concept was already introduced
by Marsaglia and Zaman, and Goresky and Klapper to design
random number generators in [8] and [9]. However, the imple-
mentation of such FCSRs is not trivial because of handling carry
values. The simplest method is to use large variables of size
2£-bit (declared with ‘unsigned __int64’ or ‘unsigned
long long’ which depends on compilers). While almost all
CPUs provide a large variable type, the efficiency of operations
with large variable types would be very low. Another tricky
method is to use conditional operators (such as ‘i £’ statement).
But, the efficiency is also rather low.

In this paper, we propose some conditions for FCSRs over 2¢-
adic number which admit fast software implementations using
only simple operators over normal £-bit words (such as shifts,
maskings, xors, and modular addition with modulus 24). More-
over, we give two implementation examples for the FCSRs. Our
simulation result shows that the proposed methods are twice
more efficient than usual methods using conditional operators.

This paper is organized as follows. We briefly review some
preliminaries about FCSRs over 2-adic number and b-adic num-
ber where b = 2¢ in the following section. In Section III, we
propose some conditions on the connection integers to realize
FCSRs with only simple operators and describe implementation
methods. In Section IV, we validate our claims by giving simu-
lation results. Finally, we conclude in Section V.

II. PRELIMINARIES
A. FCSRs over 2-Adic Number

Suppose that an FCSR has a r register cells. Let a,, ; be con-
tents of each cell fori = 1, --,r and m,,_1 be a value of the
memory at {n — 1)th clock. Then the contents of each cell and
the memory are updated at nth clock as follows (see Fig. 1).

Yo = Z%an——i + Mp1, ¢y
i=1

Gn = 5y mod 2, ¥

My = [ Ln/2]. 3)

The sequence generated by an FCSR can be regarded as a 2-
adic number o = (ag + 2a; + -+ + 2*a; + --+). Since the
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Fig. 1. Structure of FCSRs,

sequence is eventually periodic, o can be represented as a ra-
tional number of the form a/q where ¢ = 37, ¢;2* — 1 and
q is called the connection integer of the FCSR. Conversely, for
a rational integer a/q, we can construct an FCSR such that the
output sequence of the FCSR is equal to the 2-adic representa-
tion of a/q. For more details, refer to {5].

B. FCSRs over 2'-Adic Number

FCSRs over 2-adic number can be extended to that over b-adic
number where b = 2¢ [8]. In other words, the cell contents a,,_;
and feedback coefficients ¢; are £-bit integers. Then, the updat-
ing operations are as similar as FCSRs over 2-adic number (cf.
(1), (2), and (3)). The difference is that the modulus is b and the
memory is updated by m,, = |, /b]. If (ar_1,ar_2, -, ag)
are initial contents of the register cells, we can also regard the
output sequence (ag, a1, - - -) as a b-adic integer & = Yoo a;b’.

In the similar manner of the case of FCSRs over 2-adic num-
ber, a can be represented as a rational number a /q where a =
Ym0 S Gtk i~ 1B, g = qrb+gab? - g,b7— 1,
and go = —1. Note that if a/q is the associated rational number
of an FCSR over b-adic number, we can also construct an ordi-
nary FCSR over 2-adic number whose output is same as a /q. Of
course, the connection integer is also g, but the initial contents
may be different from the given (-bit) initial contents of the
FCSR over b-adic number. Conversely, if a connection integer ¢
of an FCSR over 2-adic number satisfies that b | (¢+ 1) then we
can construct an FCSR over b-adic number whose output is the
same as that of the FCSR over 2-adic number,

HI. SOFTWARE IMPLEMENTATION OF FCSR

The problem of implementing (original) FCSRs in software
is that the size of register cells is only 1 bit while the least unit
of a computer word is 8-bit (called byte). So we have to handle
individual bits of each register and it forces to consume much
cost. This is the reason why we are interested in word based
FCSRs whose register cells consist of £-bit integers. Throughout
the paper, we assume that FCSRs are based on words of size 32-
bit (usual computer word size).

However, we have another difficulties even with word based
FCSRs since multiplications with 32-bit integers are also diffi-
cult to implement in software. We may avoid this problem by
taking register coefficients g;’s with low weights. Then, we can
implement a multiplication by ¢; with several shifts and addi-
tions. It is not difficult to find FCSRs with low weight register
coefficients.
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We still have the problem of handling carry values which hap-
pens when the summation result is larger than 232. Since the ad-
dition provided by general compiler is usually modular addition
(with modulus 232), the carry would disappear without special
handling for carry.

A paive method for obtaining ¢ = a + b mod 2%? and
m = (a + b) div 2*? for two 32-bit integers a and b uses 64-bit
variables declared with ‘unsigned __inté64’ as follows (C
expression).

unsigned __int64 temp;

temp = (unsigned __int64)a
+ (unsigned __int64)b;

temp & OxXFFFFFFFF;

{temp >> 32).

<
m

[

The above method looks simple and is easy to understand.
However, the efficiency is very low since the operators with 64-
bit operands are inefficient. Another tricky method uses condi-
tional operators as follows (C expression).

¢ = a + b;
m = 0;

if{(c < a) m = 1; // carry happens.

Of course, we can use ternary conditional operator instead
of “1f’ operator: m=((c < a) ? 1 : 0). Unfortunately,
these conditional operators are also somewhat inefficient com-
paring with unary or binary operators such as compliments,
shifts, modular additions, bitwise-ands (maskings), xors, etc.
Thus, we want to implement FCSRs without conditional opera-
tors. In this section, we propose FCSRs which admit fast soft-
ware implementation using only efficient operators,

A. FCSRs with Implementation Using Full-Size Words

Theorem 1: Let g = > ._, ¢;(2%?)* — 1 and w be the Ham-
ming weight of g + 1. Let k; be the maximum number such that
2k | g;. If the following conditions are satisfied, we can imple-
ment the FCSR associated with the connection integer ¢ and the
initial memory m,_y without conditional operators.

1. min{k;} > Jlogy(w)].
2.3 a—1<2%2,
30<mr S50 0 — 1
Proof: Note that the contents are updated at nth clock as
follows.

Yo = ZQian~i + Mp—1,
i=1
an =X, mod 2%
my, = [Zn/232_§.
By the third condition, the content of memory cell at every

clocking satisfies the same inequality 0 < m, < ., ¢; — 1
for any n > r — 1 by mathematical induction.

My, = [(i Gin—i + Mp_1)/2%]
SLQwen-i + g —1)/2%]
=1 alan-i+1) —1)/2%2)

i=1
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Then, the second condition forces the content of the memory not
to exceed a 32-bit integer, so we do not care about the carry in
the memory.

Now, we describe how to update the registers using only nor-
mal operators. Let ¢; = > j 2.5 be the binary expression of
¢ Then, ", gian—; = Z” 2t.ia,_;. So we may assume that
¥, = Z}”zl 2Yag, +my_y forty <ty <--- < ty, by reorder-
ing indices t; ; since the Hamming weight of (¢ + 1) is w. We
will split ¥, into three parts (see Fig. 2).

Each part can be computed as follows.

Il

S1= lag, /274,
j=1

Sy

|
.MS

I
i

(as, mod 22 %)25 71 4 |, /20,
j
S5 = my,_1 mod 2.

It is easy to show that ¥, = $123% + 552! + S5 since a =
la/t]t + (amod t).

Since S| is a part of the memory, it is less than 232, S5 is also
trivially less than 232. We will show that S should be less than
232, By the definition of S, we have

52 S Z(232—t1 - 2t]‘7t1) + I_mn—l/ztl_l
J=1

w
< 232 =Nloma()) (gt t) 4 [my,,_y /201].

Jj=1

We already described that m,_; < Y. _,¢q; — 1 forn > rin
the first paragraph of this proof. Since Y7, ¢; = Y7, 2",
we have m,_; < Z}”zl 2t5 — 1. Hence,

w
[y /28] <Y 20 b -
j=1

’
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Fig. 3. Structure of the FCSR, F3.

Then, finally, we have

S, < 232~ (t1-[logy(w)1) _ | 932

since t; > [log,(w)]. Therefore, we can handle S1, 57, and S3
without any overflow (exceeding 32-bit).
On the other hand, a,, and m,, can be computed as follows.

an = (Szmod 932-tiyoh 1 Gy
my, = St + L52/232_tlj.

Note that all the operations used in computing S1, Sa, 53, @,
and m,, are |-/2% |, mod 2%, multiplication by 2%, and ad-
dition (whose result is less than 232), so they are implemented
with only shifts, maskings, xors, and modular additions. Fur-
thermore, conditional operators need not be used. a

B. FCSRs with Implementation Using Half-Size Words

In our second method, we fill the register cells (declared with
32-bit) with 16 bits. In other words, we regard the size of the
register cells is 16-bit. Of course, the number of register cells
should be double comparing with the given FCSR over 2%2-adic
number. By this way, we can put the summation result within
32-bit, hence do not care about the carry disappearing due to
overflow.

The problem is how to maintain the consistency between the
given FCSR (over 232-adic number) and the new FCSR (over
216_adjc number). By the following theorem, we can split each
cells into two parts of the same size and implement naturally if
the connection integer satisfies > ¢; — 1 < 216

Theorem 2: Let ¢ = >, ¢;(2%%)* — 1 be the connection
integer of the given FCSR, F; with r register cells of 32-bit.
Let (ay—1," -, ao) and m,_; be the initial contents of register
cells and the memory of F, respectively. Let F5 be an FCSR
with 2r register cells of 16-bit whose connection integer is ¢
and (cop_1,Cop—2, " €1, Co) and mj, _; as the initial contents
of F such that

s
16 _ /
a; = C2i412° +c2 andmy_1 =My, | < § g — 1
=1

fori=0,---,r—1.If> ¢ — 1< 2% and ¢; < 26, then the
output sequences of F; and F; are identical.
Proof: Since each g; is less than 216, the FCSR, 7> asso-
ciated with the connection integer g can be depicted in Fig. 3.
The updating processes of F5 at 2nth and 2n + 1th clock are
as follows.

!
Oap = Con—2¢1 + *+ + Can—2rQr + Moy,



Cop = 09y, mod 216,
m,2n = LUZW/QIGJ

and

!
Oon+1 = Con—1G1 + - + Con—2r119r + Moy,

16
Cani1 = Oansrmod 277,
’ . 16
Mopt1 = [02n+1/27°].

Note that m),_, < >0, ¢; — 1 < 2% in the similar manner
of the proof of the previous theorem. Then,

ok <@ -1 q+mp_,
<232 _ 916 4 my_q < 232

Thus, all the above processes can be implemented within single-
word (32-bit) operations.

In order to show the consistency of the two FCSRs, it is
enough to show that a,, = ¢3,,12' + ¢z, and m,, = mh, 1
We will use the mathematical induction on 7 to prove it. Rewrit-
ing 5, (updating process of F1), we obtain the following equa-
tion.

r
Yn = Z On—iGi + Mp—1
=1

T
16
= Z(CQn—2i+12 + Can—2i)gi + My, 1
ga=1

= 16 ! 9l6
= 04127 + Ogn — Mgy 2

= 0onp12'% + (02, mod 216).
Thus, we have

Ay, = Ly, mod 232
= (02nt+1mod 2'6)218 4 (55, mod 2'6)

= (can+12'® + c2n)

and My = |£,/2%] = [02,41/21] = mb, . .

IV. SIMULATION RESULTS

In this section, we implement an FCSR to validate the cor-
rectness of the claims in the previous section. Let ¢ = 8 - 232 +
4-2% 4 8.2169 _ 1 be a connection integer which satisfies all
the conditions in Theorem 1 and Theorem 2. Of course, q is a
prime number and q — 1 is factored into g — 1 = 2- 3% - 19p for
a prime number p. The corresponding FCSR has 5 register cells
L[4], L3}, -~ L[0].

We implement the FCSR using different methods and com-
pare the efficiency of them. The first method uses conditional
operations such as ‘1f’. The next uses 64-bit register pro-
vided computer CPU (declared with ‘unsigned __int64’
or ‘unsigned long long’). In this case, the code looks
very simple since the summation result can be represented only
one variable. The last two methods are based on the previous
section. We will describe the C expression of the main part in
the ‘for’ loop of each method. In the following description,
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‘L[1]" will be shifted to ‘I.[1-1]1" and the last cell ‘T.[4}’
will be updated by the FCSR. ‘m’ is denoted by a previous mem-

ory which is updated at every step.
1. Use ‘if’ statement:

sigma = 8%L[4] + m;

m = {L[4] >> 29) + (L{2] >> 30} + (L[0] >>29};
if{sigma < m) m++;

sigma2 = 4xL[2] + 8xL[0];

if{sigmaz < 4xL[2]} m++;

L{0Y = LJ[1}; L[1] = L[2];

L{2] = LI[3]; L[3] = L[4);

L{4] = gigma + sigmal; // update state
1£(L[4] < sigma) m++;

2. Use 64-bit variables declared with ‘unsigned __inté64’

or ‘unsigned long long’ statement:
unsigned __inté64 L{5], sigma;

sigma = (L[4]<<3) + (L[2]<<2) + (L[0]<<3) + m;
L{0] = L[1]}; L[1] = L[2]:
L{2] = L[31; L[3] = L[4];
L[{4] = sigma & OXFFFFFFFF; // update state
m = (gigma >> 32); // update memory
3. Our method] (using full-size word): '
81 = (L[4] >> 29) + (L[2] »> 30) + (L[O] >»29};
82 = ((L[4] & OxX1FFFFFFF) << 1)
+ (L[2] & Ox3FFFFFFF)
+ ((L[0] & Ox1FFFFFFF) << 1) + (m>>2);
L{0] = L[1]; L[1] = L[21;
L{2] = L{31; L{3] = LI[4]);
L{4] = (sigma << 2} + (m & 0x3);

m = Sl + (sigma >> 30)};

4. Our method?2 (using half-size word): In this method, all vari-
ables are declared with ‘unsigned int’ (32-bit), but their
contents are filled with only 16 bits. Thus, we need 10 regis-
ter cells, L[9], L8], - -, L[0].

unsigned int L{10], sigmal, sigma2;

sigmal = (L[8]<<3) + (L[4]1<x<2) + (L[0]<<3) + m;
m = (sigmal >> 16);

sigma2 = (L[91<<3) + (L{51<<2} + (L{11<<3) + m;
m = {sigma2 >> 16);

Li0] = LI1}; LI1] = LI27;

L{2] = L[31: L[3] = LI[4]1;

L{4] = L([5]; L[5] = L{6];

L{6] = L[7]1; L[7] = LI8];

L{8] = sigmal & OxFFFF;

L{9] = sigma2 & OxFFFF;

We perform the above C codes under three different environ-
ments (Intel Pentium 4 (@3.4 Ghz, 2 GB RAM), Intel Core2
T7200 (@2.0 Ghz, 2 GB ram), and TI DSP TMS320C64xx
{by simulating program called Code Composer (CC) 3.3.38.2in
Pentium 4)). In Pentium 4, we compile the same C source code
using different compilers, Microsoft Visual C++ 6.0 (MVC) and
GNU compiler collection (GCC) 3.4.4 within Cygwin environ-
ment. In Core2, we use Microsoft Visual Studio .Net 2003 as a
compiler. For the case of TMS320C64xx, we simulate the envi-
ronment using CC at 200 Mhz clock speed.

In the above environment, we generate 2% times of 32-bit and
measure the performance by the duration time. The following
table shows that our proposed methods are more efficient than
other methods. In particular, ours are at least twice faster in Intel
CPU environments.

V. CONCLUSION

In this paper, we dealt with FCSRs whose register cells are
£-bit integers in order to improve efficiency in software imple-
mentation {(e.g., / = 32). We may use large variables of size
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Tabte 1. Comparison of time (in sec.) generating 228 32-bit words.

if __int64 | ours-full | ours-half
P4 (MVC) 3.86 7.35 1.16 1.43
P4 (GCC) 476 2.65 1.10 1.37
T7200 (\Net) | 3.25 8.87 1.28 1.31
TMS (CC) | 10.73 13.41 8.06 6.70

2£-bit or conditional operators (such as ‘if’ statement), but the
efficiency is very low. So we have proposed 232-adic FCSRs
which admit fast software implementation using only simple op-
erators such as shifts, maskings, and modular additions without
conditional operators. As a consequence our methods are more
efficient than others.
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