DOI QR코드

DOI QR Code

유동층(流動層) 연소기(撚燒器)로 부터 발생(發生)된 석탄(石炭) 비산(飛散)재를 이용(利用)한 인공경량골재(人工輕量骨材) 제조(製造)

Manufacturing of Artificial Lightweight Aggregates using a Coal Fly Ash Discharged from Fluidized Bed Combustor

  • 강민아 (경기대학교 신소재공학과) ;
  • 강승구 (경기대학교 신소재공학과)
  • Kang, Min-A (Department of Materials Engineering, Kyonggi University) ;
  • Kang, Seung-Gu (Department of Materials Engineering, Kyonggi University)
  • 투고 : 2010.12.29
  • 심사 : 2011.02.01
  • 발행 : 2011.02.26

초록

유동층 연소 방식의 화력발전소에서 발생된 석탄 비산재를 점토와 혼합하여 8 mm 크기의 구형 성형체를 제조한 후, $1050^{\circ}C{\sim}1250^{\circ}C$에서 10분 직화 소성하여 인공골재를 제조하고, 골재의 발포특성에 미치는 비산재의 영향을 분석하였다. 비산재가 50 wt% 미만으로 첨가원 시편은 발포되면서 black-coring 현상을 나타내었다. 비산재가 50 wt% 이상 포함되면, 소성온도와 함께 골재의 부피비중이 높아지면서 시편 전체가 검은색으로 변하였다. 이는 미연탄소 함량의 증가로 인해 과도한 환원분위기가 형성되고 따라서 가스가 급속히 방출됨과 동시에 대부분의 산화철이 환원되기 때문이다. 소성온도가 같을 경우 비산재 함유량이 높을수록 골재의 부피비중은 낮아지는 경향을 보였다. 비산재 첨가량이 10 wt%인 경우를 제외한 모든 시편들은 소성 온도를 높이면 홉수율이 감소하였는데 이는 고온일수록 액상이 많이 형성되었기 때문이다. 본 연구에서 제조된 유통층 연소기 석탄 비산재에 점토가 10~90 wt% 첨가된 시편들은 부피비중이 0,9~1.8, 흡수율이 8~60%로 다양한 특성을 나타내어 중량 내지 경량골재로 사용이 가능할 것으로 생각된다.

참고문헌

  1. K. D. Kim and S. G. Kang, 2007: Manufacturing artificial lightweight aggregates using coal bottom ash and clay, J. of the Korean Crystal Growth and Crystal Technology, 17(6), pp277-282.
  2. K. D. Kim, J. H. Kim, Y. T. Kim and S. G. Kang, K. G. Lee, 2010: Production of Lightweight Aggregates Using Power plant Reclaimed Ash, Journal of the Korean Ceramic Society, 47(6), pp583-589. https://doi.org/10.4191/KCERS.2010.47.6.583
  3. K. D. Kim, 2010: A Study on application and fabrication of functional ceramics for constructing materials using ecofriendly waste recycling process, Kyonggi University graduate school a doctoral dissertation.
  4. D. H. Shin, J. H. Hwang, J. M. Lee and D. W. Kim, J. S. Kim, 2004: A Study on Design Optimization of Circulating Fluidized Bed Boiler for Domestic Anthracite, J. of the Korea society for energy engineering, pp287-292.
  5. S. M. Kim, J. M. Lee, J. S. Kim, K. G. Song, 2000: Evaluation of Performance for The Tonghae CFBC with Operation Parameters, J. of Korea society for energy engineering, 9(3), pp250-260.
  6. Riley, C. M., 1951: Relation of chemical properties to the bloating of clay, J. of Amec. Ceram. Soc., 34(4), pp121-128. https://doi.org/10.1111/j.1151-2916.1951.tb11619.x
  7. Y. J. Kwon, J. H. Kim, Y. T. Kim and S. G. Kang, K. G. Lee, 2001: Lightweight Aggregate Bloating Mechanism of Clay/Incinerated Ash/Additive System, Journal of the Korean Ceramic Society 38(9), pp811-816.
  8. H. J. Lee, D. W. Kim, Y. T. Kim and S. C. Hong, K. G. Lee, 1993: Analysis of Coal Fly Ash, Journal of the Korean crystal growth and crystal technology, 3(2), pp185-201.
  9. J. Y. Park, Y. T. Kim, K. G. Lee, S. G. Kang, and J. H. Kim, 2005: The Mechanism of Black Core Formation, J. of the Korean Crystal Growth and Crystal Technology, 15(5), pp208-215.
  10. J. Y. Park, Y. T. Kim, K. G. Lee, S. G. Kang, and J. H. Kim 2005 : Microstructural observation of artificial aggregates at various sintering atmospheres, J. of the Korean Crystal Growth and Crystal Technology, 16(2) pp71-75.

피인용 문헌

  1. Application of Powdered Waste Glasses and Calcium Carbonate for Improving the Properties of Artificial Lightweight Aggregate Made of Recycled Basalt Powder Sludge vol.14, pp.3, 2014, https://doi.org/10.5345/JKIBC.2014.14.3.230
  2. Grinding Effects of Coal-Fired Pond Ash on Compressive Strength of Geopolymers vol.23, pp.6, 2014, https://doi.org/10.7844/kirr.2014.23.6.3