DOI QR코드

DOI QR Code

Proposal of a New Design Method of the Pile-Bent Structure Considering Plastic Hinge

단일 현장타설말뚝의 소성힌지를 고려한 최적설계법 제안

  • 안상용 ((주)대우엔지니어링 인프라사업본부) ;
  • 장심섬 (연세대학교 토목환경공학부) ;
  • 김재영 (연세대학교 토목환경공학부)
  • Received : 2010.11.24
  • Accepted : 2011.01.18
  • Published : 2011.02.28

Abstract

In this study, a new design method of Pile-Bent structure considering plastic hinge was proposed on the basis of the beam-column model. To obtain the detailed informations, the optimized cross-section ratio between column and pile was analyzed to induce the plastic hinge at the joint section between the pile and column. Base on this study, the optimized diameter ratio of pile and column can be obtained below the inflection point of the bi-linear curve depending on the relations between column-pile diameter ratio ($D_c/D_p$) and normalized lateral cracking load ratio ($F/F_{Dc=Dp}$). Moreover, through comparisons with field cases to find out in-depth limit in which minimum concrete-steel ratio could be applied, in-depth limits ($L_{As=0.4%}$) normalized by the pile length ($L_p$) proportionally decrease as the pile length ($L_p/D_p$)increases up to $L_p/D_p=17.5$, and beyond that in-depth limit converges to a constant value (${\simeq}0.3$).

본 연구에서는 소성힌지를 고려한 단일 현장타설말뚝의 수평거동을 분석하기 위하여 Beam-Column 해석모델을 토대로 단일 현장타설말뚝 기초의 거동특성을 파악하고, 소성힌지를 고려한 최적설계법을 제안하였다. 단일 현장타설말뚝의 소성힌지를 지상부로 유도하기 위한 최적의 기둥-말뚝의 직경비를 분석하기 위해, 변단면 단일 현장타설말뚝의 단면조건에 따른 균열 휨모멘트를 산정하고 지반조건과 수평하중에 따른 말뚝의 거동을 해석하였다. 연구 결과, 최적의 단면 조건은 기둥/말뚝 직경비($D_c/D_p$)와 정규화된 수평균열하중($F/F_{Dc}=D_p$)의 관계를 나타내는 이중직선의 변곡점 이하 부분에서 산정할 수 있었으며, 이로부터 최적의 단면 조건을 제안하였다. 또한 실제 시공사례 분석을 통해, 깊이별 휨모멘트를 바탕으로 최소철근비 적용이 가능한 구간을 분석하였으며, 그 결과 말뚝길이($L_p$)로 정규화된 최소 철근비 적용이 가능한 한계깊이($L_{As=0.4%}$)는 말뚝 직경으로 정규화된 말뚝길이($L_p/D_p$)에 따라 선형적으로 감소하였으며, $L_p/D_p=17.5$ 이후부터는 일정한 값(${\simeq}0.3$)에 수렴함을 알 수 있었다.

Keywords

References

  1. 김재영, 정상섬 (2010), "단일형 현장타설말뚝의 최소 철근비 적용을 위한 연구", 한국지반공학회 2010년도 가을 학술발표회 논문집.
  2. 대한토목학회(2008), 도로교 설계기준 해설(하부구조편), pp.831.
  3. 손혁수, 최인기, 강동옥, 양종호(2005), "인천대교 고가교 단일현장타설말뚝 기초의 설계", 대한토목학회 2005년도 학술발표회 논문집, pp.959-962.
  4. 손혁수, 서석구, 송종영, 이완수(2005), "횡방향철근의 구속효과를 고려한 현장타설콘크리트 말뚝 설계", 대한토목학회 2005년도 학술발표회 논문집, pp.1077-1080.
  5. 안상용 (2010), "단일 현장타설말뚝의 소성힌지를 고려한 최적설계법 제안", 연세대학교 박사학위 논문.
  6. 연세대학교 (2006), 수원 경전철 민간투자사업 기본설계 단일 현장타설말뚝의 설계기법 개발 최종보고서.
  7. 이진형, 배종오, 정상섬 (2001) "암반에 근입된 대구경 현장타설 말뚝의 지지력 분석", 대한토목학회 2001년도 학술발표회 논문집, pp.1-4.
  8. 전경수 (2000), 풍화암에 근입된 현장타설말뚝의 연직 및 횡방향 지지거동 분석, 서울대학교 박사학위 논문.
  9. 전경수 (2004), "단일 현장타설말뚝 기초의 설계방안 수립", 고속도로, vol. 68, pp.14-27.
  10. 정상섬, 곽동옥, 안상용 (2005), "Pile-Bent 구조물의 수평거동 분석", 대한토목학회 2005년도 학술발표회 논문집, pp.3968-3971.
  11. 정상섬, 곽동옥, 안상용, 이준규(2006), "$P-{\Delta}$효과를 고려한 Pile-Bent 구조물의 수평거동 연구", 한국지반공학회 논문집, 제 22권, 8호, pp.77-88.
  12. 조성한 (1997), 풍화암에 근입된 현장타설말뚝의 하중전이에 관한 연구, 연세대학교 박사학위 논문
  13. 한국도로공사(2004), 단일현장타설말뚝 기초공법 적용 기준.
  14. 함홍규 (2002), Soil nail로 보강된 현장타설말뚝의 하중전이 분석, 연세대학교 석사학위 논문.
  15. Broms, B. (1964a), "Lateral Resistance of Piles in Cohesive Soils", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.90, No.4, pp.27-63.
  16. California Department of Transportation Division of Engineering Services (2006), CALTRANS SEISMIC DESIGN CRITERIA(VERSION 1.4).
  17. FHWA (1988), Drilled Shaft, National Highway Institute.
  18. Jeong, S. S., Kim, Y. H., Kim, J. Y. (2010), "Influence on Lateral Rigidity of Offshore Piles using proposed p-y Curves", Journal of Ocean Engineering (Online published paper), http://www.sciencedirect. com/science?_ob=ArticleURL&_udi=B6V2C-51WM26Y-1&_user= 44062&_coverDate=01%2F07%2F2011&_rdoc=1&_fmt=high&_ori g=search&_origin=search&_sort=d&_docanchor=&view=c&_acct= C000004738&_version=1&_urlVersion=0&_userid=44062&md5=4 4e415912a68cb5987f0adf3d2c05fcb&searchtype=a.
  19. Kim, Y. H., Jeong, S. S., Lee, S. J. (2010), "Wedge Failure Analysis by Coupled Soil Resistance on Laterally Loaded Piles in Clay", Journal of Geotechnical and Geoenvironmental Engineering, ASCE (Online published paper), http://scitation.aip.org/getabs/servlet/Getabs- Servlet?prog=normal&id=JGGEXX000001000001000275000001 &idtype=cvips&gifs=yes.
  20. Matlock, H. (1970), "Correlation for design of laterally loaded piles in soft clay", The second annual offshore technology conference, Houston, Texas, April 22-24, OTC 1204, pp.577-607.
  21. O'neill, M. W., and Murchison, J. (1983). "An evaluation of p-y relationships in sands." Dynamics Response of Pile Foundations: Analysis Aspects, ASCE, Special Technical Publication.
  22. Poulos, H.G. (1971a), "Behavior of Laterally Loaded Piles : Part 1 - Single Piles", Journal of Soil Mechanics and Foundation Div., ASCE, Vol.97, No.5, pp.771-731.
  23. Poulos, H. G. (1971b), "Behavior of Laterally Loaded Piles : Part 2 - Group piles", Journal of Soil Mechanics and Foundation Div., ASCE, Vol.97, No.5, pp.733-751.
  24. Reese, L. C. (1977), "Analysis of laterally loaded piles in weak rock", Journal of Geotechnical and Geoenvironmental Engineering., ASCE, Vol.121, No.7, pp.113-127.
  25. Seol, H. I., Jeong, S. S., Cho, S. H. (2009), "Analytical Method for Load Transfer Characteristic of Rock-Socketed Drilled Shafts", Journal of Geotechnical and Geoenvironmental Engineering, ASCE. Vol.135, No.6, pp.778-789. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:6(778)

Cited by

  1. 연약지반에 건설된 단일형 현장타설말뚝 교량의 근단층지반운동에 대한 내진성능 vol.23, pp.7, 2011, https://doi.org/10.11112/jksmi.2019.23.7.137
  2. 다지점 가진에 의한 단일형 현장타설말뚝 교량의 지진거동 vol.32, pp.6, 2019, https://doi.org/10.7734/coseik.2019.32.6.425
  3. 경험식을 통한 대구경 현장타설말뚝에 대한 수평지반반력계수와 수평거동 영향범위의 평가 vol.19, pp.2, 2020, https://doi.org/10.12814/jkgss.2020.19.2.001