DOI QR코드

DOI QR Code

나노물질의 선택적 레이저소결을 이용한 유연전기소자 구현 연구현황

Status of Research on Selective Laser Sintering of Nanomaterials for Flexible Electronics Fabrication

  • Ko, Seung-Hwan (Applied Nano Technology & Science Lab, Dept. of Mechanical and Aerospace Engineering, KAIST)
  • 투고 : 2010.12.13
  • 심사 : 2011.02.21
  • 발행 : 2011.05.01

초록

대부분의 유연전기소자는 플라스틱, 옷감, 종이와 같이 고온에 민감한 물질이기 때문에 열에 민감한 기판 위에 금속을 증착하고 패터닝할 수 있는 저온 공정의 개발이 필요하다. 최근 기존의 광식각과 진공증착 방법을 이용하지 않고 액상으로 금속 나노입자의 박막을 형성하고 선택적 레이저 소결을 이용하여 플라스틱에 열적손상을 최소화하고 고해상도의 금속 패터닝을 방법이 많은 연구가 활발히 진행되고 있다. 본 논문에서는 본 연구실에서 활발히 수행중인 나노물질의 선택적 레이저소결법을 이용하여 유연 디스플레이와 유연태양전지와 같은 유연전기소자의 개발 동향에 대해 알아보고 앞으로의 발전방향에 대해 논의한다.

A plastic-compatible low-temperature metal deposition and patterning process is essential for the fabrication of flexible electronics because they are usually built on a heat-sensitive flexible substrate, for example plastic, fabric, paper, or metal foil. There is considerable interest in solution-processible metal nanoparticle ink deposition and patterning by selective laser sintering. It provides flexible electronics fabrication without the use of conventional photolithography or vacuum deposition techniques. We summarize our recent progress on the selective laser sintering of metals and metal oxide nanoparticles on a polymer substrate to realize flexible electronics such as flexible displays and flexible solar cells. Future research directions are also discussed.

키워드

참고문헌

  1. Ko, S.H., 2010, “Research Status on Flexible Electronics Fabrication by Metal Nano-particle Printing Processes,” Particle and Aerosol Research, Vol. 6, No. 3, pp131-138.
  2. Redinger, D., Molesa, S., Yin, S., Farschi, R. andSubramanian, V., 2004, “An Inkjet Deposited Passive Component Process for RFID,” IEEE Trans. Electron Devices, Vol. 51, No. 12, pp.1978-1983. https://doi.org/10.1109/TED.2004.838451
  3. Ko, S.H., Chung, J., Pan, H., Grigoropoulos, C.P. andPoulikakos, D., 2007, “Fabrication of Multilayer Passive and Active Electric Components on Polymer Using Inkjet Printing and Low Temperature Laser Processing,” Sensors and Actuators A, 134, pp.161-168. https://doi.org/10.1016/j.sna.2006.04.036
  4. Ko, S.H., Park, I., Pan, H., Grigoropoulos, C.P., Pisano,A.P., Luscombe, C.K. and Fréchet, J.M.J., 2007, “Direct Nanoimprinting of Metal Nanoparticles for Nanoscale Electronics Fabrication,” Nano Letters, Vol. 7, No. 7, pp.1869-1877. https://doi.org/10.1021/nl070333v
  5. Buffat, P.A. and Borel, J.P., 1976, “Size Effect on the Melting Temperature of Gold Particles,” Phys. Rev. A. Vol. 13, No. 6, pp.2287-2298. https://doi.org/10.1103/PhysRevA.13.2287
  6. Ko, S.H., Pan, H., Lee, D., Grigoropoulos, C.P. andPark, H.K., 2010, “Nanoparticle Selective Laser Processing for a Flexible Display Fabrication,” Jpn. J. Appl. Phys., 49, 05EC03. https://doi.org/10.1143/JJAP.49.05EC03
  7. Ko, S.H., Pan, H., Grigoropoulos, C.P., Luscombe, C.K.,Frechet, J.M.J. and Poulikakos, D., 2007, “All Inkjet Printed Flexible Electronics Fabrication on a Polymer Substrate by Low Temperature High Resolution Selective Laser Sintering of Metal Nanoparticles,” Nanotechnology, 18, 345202. https://doi.org/10.1088/0957-4484/18/34/345202
  8. Ko, S.H., Pan, H., Ryu, S.G., Misra, N., Grigoropoulos,C.P. and Park, H.K., 2008, “Nanomaterial Enabled Laser Transfer for Organic Light Emitting Material Direct Writing,” Applied Physics Letters 93, 151110. https://doi.org/10.1063/1.3001803
  9. Pan, H., Ko, S.H., Misra, N. and Grigoropoulos, C.P., 2009, “Laser Annealed Composite TiO2 Electrodes for Dye-Sensitized Solar Cells on Glass and Plastics, Applied Physics Letters, 94, 071117. https://doi.org/10.1063/1.3082095

피인용 문헌

  1. Numerical Study of Impact of Microdroplet Containing Nanoparticles vol.36, pp.6, 2012, https://doi.org/10.3795/KSME-B.2012.36.6.609