DOI QR코드

DOI QR Code

냉각수온 효과에 따른 고온 강판의 스프레이 냉각 열전달 특성 연구

Effect of Water Temperature on Heat Transfer Characteristic of Spray Cooling on Hot Steel Plate

  • 이정호 (한국기계연구원 열유체시스템연구) ;
  • 유청환 (LG 전자 HA 사업본부) ;
  • 박상진 (한국기계연구원 열유체시스템연구)
  • Lee, Jung-Ho (Dept. of Thermal Systems, Korea Institute of Machinery and Materials) ;
  • Yu, Cheong-Hwan (Division of Home Appliance, LG Electronics Co.) ;
  • Park, Sang-Jin (Dept. of Thermal Systems, Korea Institute of Machinery and Materials)
  • 투고 : 2010.05.26
  • 심사 : 2011.02.20
  • 발행 : 2011.05.01

초록

수분류 스프레이 냉각은 $900^{\circ}C$ 이상의 고온에서 강판을 냉각하는데 매우 중요한 기술이다. 본 연구는 냉각수온이 고온 강판의 수분류 스프레이 냉각에 미치는 영향을 고찰하였다. 이 때의 열유속은 시편, 카트리지히터, 열전대의 조합으로 고안된 열유속게이지를 제작하여 엄밀하게 측정되었다. 스프레이는 fullcone 노즐로부터 생성되고 냉각실험은 일정한 스프레이 질량유속과 노즐과 표면 사이의 거리 조건에서 수행되었다. 냉각수온의 효과는 $5^{\circ}C$에서 $45^{\circ}C$까지 다섯 가지의 서로 다른 수온에 대한 수분류 스프레이 냉각의 열전달 현상을 비교 및 평가하였다. 여기서 열유속곡선과 열전달계수는 고온 강판의 냉각공정에서 실제 스프레이 냉각을 위한 기본 데이터로 활용될 수 있다.

Water spray cooling is a significant technology for cooling of materials from high-temperature up to $900^{\circ}C$. The effects of cooling water temperature on spray cooling are mainly provided for hot steel plate cooling applications in this study. The heat flux measurements are introduced by a novel experimental technique that has a function of heat flux gauge in which test block assemblies are used to measure the heat flux distribution on the surface. The spray is produced by a fullcone nozzle and experiments are performed at fixed water impact density of G and fixed nozzle-totarget spacing. The results show that effects of water temperature on forced boiling heat transfer characteristics are presented for five different water temperatures between 5 to $45^{\circ}C$. The local heat flux curves and heat transfer coefficients are also provided to a benchmark data for the actual spray cooling of hot steel plate cooling applications.

키워드

참고문헌

  1. Mizikar, I., 1970, “Spray Cooling Investigation for Continuous Casting of Billets and Blooms,” Iron and Steel Engineer, pp. 53-70.
  2. Bolle, L. and Moureau, J. C., 1982, “Spray Cooling of Hot Surfaces,” Multiphase Science and Technology, Vol. 1, pp. 1-97. https://doi.org/10.1615/MultScienTechn.v1.i1-4.10
  3. Hoogendoorn, C. J. and den Hond, R., 1974, “Leidenfrost Temperature and Heat Transfer Coefficients for Water Sprays Impinging on a Hot Surface,” Proceedings of 5th International Heat Transfer Conference, Vol. 4, pp. 135-138.
  4. Choi, K. J. and Yao, S. C., 1987, “Mechanism of Film Boiling Heat Transfer of Normally Impacting Spray,” International Journal of Heat and Mass Transfer, Vol. 30, No. 2, pp. 311-318. https://doi.org/10.1016/0017-9310(87)90119-0
  5. Deb, S. and Yao, S. C., 1989, “Analysis of Film Boiling Heat Transfer of Impinging Sprays,” International Journal of Heat and Mass Transfer, Vol. 32, No. 11, pp. 2099-2112. https://doi.org/10.1016/0017-9310(89)90117-8
  6. Chen, S-J. and Tseng, A. A., 1992, “Spray and Jet Cooling in Steel Rolling,” International Journal of Heat and Fluid Flow, Vol. 13, No. 4, pp. 358-369. https://doi.org/10.1016/0142-727X(92)90006-U
  7. Mitsutsuka, M. and Fukuda, K., 1989, “Effect of Water Temperature on Cooling Capacity in Water Cooling of Hot Steels,” Tetsu-to-Hagane, Vol. 75, No. 7, pp. 1154-1161 (in Japanese). https://doi.org/10.2355/tetsutohagane1955.75.7_1154
  8. Kimura, M., Tanaka, Y., Yoshida, H., Uemura, N.,Ohbu, M. and Sekine, T., 1984, “Development of Uniform Controlled Cooling Method : Multi-Purpose Accelerated Cooling System III,” Tetsu-to-Hagane, Vol. 70, No. 5, S375 (in Japanese).
  9. Lee, J., 2010, “Heat Transfer Enhancement of Water Spray Cooling by the Surface Roughness Effect,” Trans. of the KSME (B), Vol. 34, No. 2, pp. 203-212. https://doi.org/10.3795/KSME-B.2010.34.2.203
  10. Lee, J., 2008, “Development in In-Line Heat Flux Curve of Accelerated Cooling Machine and its Application in Plate Mills,” POSCO Technical Report 2008X017, Pohang, Korea, pp. 64-79.
  11. Beck, J. V., Blackwell, B. and St. Clair, Jr., C.R., 1985, Inverse Heat Conduction : Ill-posed Problems, A Wiley-Interscience, New York, pp. 108-217.
  12. Taler, J., 1996, “Theory of Transient Experimental Techniques for Surface Heat Transfer,” International Journal of Heat and Mass Transfer, Vol. 39, pp. 3733-3748. https://doi.org/10.1016/0017-9310(96)00015-4
  13. van Stralen, S. and Cole, R., 1979, Boiling Phenomena, McGraw-Hill, New York.
  14. Kim, J., 2007, “Spray Cooling Heat Transfer: The state of the art,” International Journal of Heat and Fluid Flow, Vol. 28, pp. 753-767. https://doi.org/10.1016/j.ijheatfluidflow.2006.09.003