DOI QR코드

DOI QR Code

이온교환막 연료전지용 원통형 막 가습기의 열 및 물질전달특성 기초 연구

Basic Analysis of Heat and Mass Transfer Characteristics of Tubular Membrane Humidifier for Proton Exchange Membrane Fuel Cell

  • 투고 : 2010.11.08
  • 심사 : 2011.02.05
  • 발행 : 2011.05.01

초록

막 가습기는 다른 가습장치와는 달리, 기생 전력의 손실이 없고 가습 성능이 우수하여 이온교환막 연료전지의 외부 가습을 위해 적용되고 있다. 원통형 막 가습기는 특히 가습성능에 비해 요구 체적이 매우 작기 때문에, 수송용 및 가정용 이온교환막 연료전지에 적용된다. 막가습기의 최적 설계를 위한 열 및 물질 전달 특성에 대한 이해가 필요하지만, 아직 다양한 연구가 이루어지고 있지 않다. 본 연구에서는 원통형 막가습기의 열 및 물질전달 특성을 이해하기 위한 특성 실험을 수행하였다. 기존의 습도 측정계는 비정상 가습 특성 실험에 한계가 있고, 정상 상태에서도 고온 다습한 환경에서는 오차가 크기 때문에 본 연구에서는 습증기 응축법을 이용하였다. 가습기의 정상상태 특성을 확인하기 위해 압력과 온도 변화에 대한 실험을 수행하였으며, 비정상 특성을 확인하기 위해 순간 유량 변화 시의 가습 성능을 측정하였다. 본 연구에서는 이상의 기초 실험을 통해서 막 가습기의 성능에 영향을 미치는 주요 인자를 확인하였으며, 원통형 막가습기의 기초적인 열 및 물질 전달 특성을 이해하였다.

The proton exchange membrane (PEM) fuel cell system is critically dependent on the humidity, which should be properly maintained over the entire operating range. A membrane humidifier is used for the water management in the PEMFC because of the membrane humidifier's reliable performance and zero parasitic power loss. In the PEMFC system, the membrane humidifier is required to provide appropriate humidity for the design point of the fuel cell. Although the performance of the fuel cell depends on the performance of the humidifier, few studies have provided a systematic analysis of the humidifier. We carry out an experimental analysis of the membrane humidifier using a vapor condensation bottle. The dry air pressure, water flow temperature, and air flow rate were chosen as the operating parameters. The results show that the time constant for the dynamic response of the membrane humidifier is relatively short, but additional analysis should be carried out.

키워드

참고문헌

  1. Lamenie, J. and Dicks, A., 2003, Fuel Cell Systems Explaned, John Wiley & Sons Ltd.
  2. Springer, T. F., Zawodzinski, T. A. and Gonesfeld, S., 1991, "Polymer Electrolyte Fuel Cell Model," J. Electrochem. Soc., 138, No. 8, pp. 2334-2342. https://doi.org/10.1149/1.2085971
  3. Ceraolo, M., Miulli, C. and Pozio, A., 2003, "Modeling Static and Dynamic Rehavior of Proton Exchange Membrane Fuel Cell on the Basis of Electrochemical Description," J. Power Sources, 113, pp. 131-144 https://doi.org/10.1016/S0378-7753(02)00565-7
  4. Pukrushpan, J. T., Peng, H. and Stefanopoulou, A., 2002, "Simulation and Analysis of Transient Fuel Cell System Performance Based on a Dynamic Reactant Flow Model," Proceeding of ASME Internatioinal Mechanical Engineering Congress & Exposition, New Orleans, Loutsiana.
  5. Picot, D., Metkemeijer, R., Bezian, J.J. and Rouveyre, L., 1998, "Impact of the Water Symmetry Factor on Humidification and Cooling Strategies for PEM Fuel Cell Stacks," Journal of Power Sources, Vol. 75, pp. 251-260. https://doi.org/10.1016/S0378-7753(98)00123-2
  6. Staschewski, D. and Mao, Z. Q., 1999, "PEMFC Operation with Extraordinarily Low Gas Pressures and Internal Humidification-Conception and Experimantal Prototype Stack," International Journal of Hydrogen Energy, Vol. 24, pp.543-548. https://doi.org/10.1016/S0360-3199(98)00102-5
  7. Buchi, F. N. and Srinivasan, S., 1997, "Operating Proton Exchange Membrane Fuel Cells without External Humidification of the Reactant Gases-Fundamental Aspects," Journal of Electrochemical Society, Vol. 144, No. 8, pp. 2767-2772. https://doi.org/10.1149/1.1837893
  8. Chen, D. and Peng, H., 2005, "A Thermodynamic Model of Membrane Humidifiers for PEM Fuel Cell Humidification Control," Journal of Dynamic Systems, Measurement, Vol. 127, pp. 424-432. https://doi.org/10.1115/1.1978910
  9. Chu, D., Jiang, R. and Walker, C., 1999, "Performance of Polymer Electrolyte Membrane Fuel Cell(PEMFC) Stacks Part 1. Evaluation and Simulation of an Air-Breathing PEMFC Stack," Journal of Power Sources, 83, pp. 128-133. https://doi.org/10.1016/S0378-7753(99)00285-2
  10. Dubose, R.A., 2002, "Enthalpy Wheel Humidifiers," Proceeding of 2002 Fuel Cell Seminar.
  11. Ha, T. H., Kim, H. S. and Min, K. D., 2006. "Experimental and Modeling Study of Humidification Performance of Membrane Humidifier for PEM Fuel Cell," J. of KSAE, pp. 1766-1771.
  12. Cave, P. and Merida, W., 2008, "Water Flux in Membrane Fuel Cell Humidifier: Flow Rate and Channel Location Effects," Journal of Power Sources 175, pp. 408-418. https://doi.org/10.1016/j.jpowsour.2007.08.103
  13. Park, S. K., Choe, S. Y. and Choi, S. H., 2008, "Dynamic Modeling and Analysis of a Shell-and-Tube Type Gas-to-Gas Membrane Humidifier for PEM Fuel Cell Applications," International Journal of Hydrogen Energy, 33, pp. 2273-2282. https://doi.org/10.1016/j.ijhydene.2008.02.058
  14. Chen, D., Li, W. and Peng, H., 2008, "An Experimental Study and Model Validation of a Membrane Humidifier for PEM Fuel Cell Humidification Control," 180, pp. 61-467.
  15. Park., S. and Oh, I.-H., 2009, "An Analytic Model of Nafion TM Membrane Humidifier for Proton Exchange Membrane Fuel Cells," 188, pp. 498-501. https://doi.org/10.1016/j.jpowsour.2008.12.018
  16. Kang, S., Min, K. and Yu, S., 2010, "Two Dimensional Dynamic Modeling of a Shell-and-Tube Water-to-Gas Membrane Humidifier for Proton Exchange Membrane Fuel Cell," 35, pp. 1727-1741. https://doi.org/10.1016/j.ijhydene.2009.11.105
  17. Yu, S., Lee, Y., Bae, H., Hwang, J. and Ahn, K., 2009, "Mass and Heat Transfer Analysis of Membrane Humidifier with a Simple Lumped Mass Model," Trans. of the KSME, B, Vol. 33, No. 8, pp. 596-603 https://doi.org/10.3795/KSME-B.2009.33.8.596
  18. Lide, D. R., 1981, Handbook of Chemistry and Physics, 62nd ed., CRC Press, Boca Raton, FL.
  19. Barenbrug, A.W.T., 1974, "Psychrometry and Psychrometric Charts," 3rd Edition, Cape Town, S.A.: Cape and Transvaal Printers Ltd.

피인용 문헌

  1. Numerical Study of Characteristic of Heat and Mass Transfer in Planar Membrane Humidifier According to Flow Direction vol.37, pp.5, 2013, https://doi.org/10.3795/KSME-B.2013.37.5.503
  2. Numerical Study on the Humidification Efficiency of Humidifying Module Shapes of the Evaporative Humidifier vol.26, pp.1, 2014, https://doi.org/10.6110/KJACR.2014.26.1.042