DOI QR코드

DOI QR Code

고분자 전해질 연료전지 막의 변형 및 피로수명

Study for the Deformation and Fatigue Life of a PEMFC

  • 양정환 (한국항공대학교 대학원) ;
  • 박정선 (한국항공대학교 항공우주및기계공학부)
  • 투고 : 2010.11.08
  • 심사 : 2011.05.02
  • 발행 : 2011.05.01

초록

전해질 막의 응력 및 변화폭의 분포는 고분자 전해질 연료전지 (PEMFC, Polymer Electrolyte Membrane Fuel Cell)의 피로수명의 중요한 인자이다. 본 논문에서는 연료전지 운전조건의 hygro-thermal 조건에 의해 전해질 막에 발생하는 기계적 응력 해석을 모델링 하였다. 기체확산층과 전해질 막 사이의 접촉해석이 여러 가지 온도, 습도 조건에 대하여 수행되었다. 구조 모델은 온도와 상대습도에 의존하는 비선형 재료물성을 적용하였다. 몇 가지 기하학적 조건들이 모델에 적용되었다. 구조해석 결과는 전해질 막의 변형이 체결조건에 크게 의존함을 보여주었다. 실험 데이터와의 비교를 통해 운전 조건에 대하여 피로수명 예측이 수행되었다.

The stress distribution and stress amplitude of a membrane are major factors to decide the mechanical fatigue life of PEMFC (Polymer Electrolyte Membrane Fuel Cell). In this paper, mechanical stresses under operating hygro-thermal condition of the membrane are numerically modelled. Contact analysis between gas diffusion layer (GDL) and the membrane is performed under various temperature-humidity conditions. The structural model has nonlinear material properties depending on temperature and relative humidity. Several geometric conditions are applied to the model. The numerical analysis results indicate that deformations of the membrane are strongly related with assembly conditions of the fuel cell. The fatigue life is predicted for practical operating condition through experimental data.

키워드

참고문헌

  1. Larminie, J. and Dicks, A., Fuel Cell System Explained, John Wiley & Sons, Ltd. 2000.
  2. Weber, A. Z. and Newman, J., “A Theoretical Study of Membrane Constraint in Polymer-Electrolyte Fuel Cells”, American Institute of Chemical Engineers, 50, pp. 3215– 3226, 2004. https://doi.org/10.1002/aic.10230
  3. Craig, G., Yeh, H. L. and Daniel, M., “Durability of Perfluorosulfonic Acid Membranes for PEM Fuel Cells”, Fuel Cell Activities, 2005.
  4. Huang, X., Solasi, R., Zou, Y., Feshler, M., Reifsnider K., Condit D., Burlatsky S. and Madden, T., “Mechanical Endurance of Polymer Electrolyte Membrane and PEM Fuel Cell Durability", Journal of Polymer Science, Part B, Polym Phys 44, pp. 2346–2357, 2006. https://doi.org/10.1002/polb.20863
  5. Budinski, M., Gittleman, C., Lai, Y., Miller, D. and O'Leary, K., “Mechanical and Chemical Degradation in Automotive Fuel CellMembranes”, International Workshop on Fuel Cell Degradation, Greece, September 19-21, 2007.
  6. Kusoglu, A., Karlsson, A. M., Santare, M. H., Cleghorn, S. and Johnson W. B., "Mechanical behavior of fuel cell membranes under humidity cycles and effect of swelling anisotropy on the fatigue stresses", Journal of Power Sources 170, pp. 345–358, 2007. https://doi.org/10.1016/j.jpowsour.2007.03.063
  7. Yaliang, T., Anette, M. K., Michael, H. S., Michael, G., Simon, C. and William, B. J., "An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane", Materials Science and Engineering, A 425, pp. 297–304 2006. https://doi.org/10.1016/j.msea.2006.03.055|
  8. Kleemann, J., Finsterwalder, F. and Tillmetz, W., “Characterisation of mechanical behaviour and coupled electrical properties of polymer electrolyte membrane fuel cell gas diffusion layers”, Journal of Power Sources 190, pp. 92–102, 2009. https://doi.org/10.1016/j.jpowsour.2008.09.026
  9. Lim, S. J., Park, G. G., Park, J. S., Sohn, Y. J., Yim, S. D., Yang, T. H., Hong, B. K. and Kim, C. S., "Investigation of freeze/thaw durability in polymer electrolyte fuel cells", International Journal of Hydrogen Energy, pp. 1-7, 2010.
  10. Tang, H. L., Pan, M. and Wang, F., "A Mechanical Durability Comparison of Various Perfluocarbon Proton Exchange Membranes", Journal of Applied Polymer Science 109, pp. 2671–2678, 2008. https://doi.org/10.1002/app.28343
  11. Li, Y., Dillard, D., Case, S., Ellis, M., Lai, Y., Gittleman, C. and Miller, D., "Fatigue and creep to leak tests of proton exchange membranes using pressure-loaded blisters", Journal of Applied Polymer Science 194, pp. 873 -879, 2009. https://doi.org/10.1016/j.jpowsour.2009.06.083