References
- Tanksley, S.D. (2004). The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16 Suppl, S181-189. https://doi.org/10.1105/tpc.018119
- Yamazaki, Y., Akashi, R., Banno, Y., Endo, T., Ezura, H., Fukami-Kobayashi, K., Inaba, K., Isa, T., Kamei, K., Kasai, F., et al. (2010). NBRP databases: databases of biological resources in Japan. Nucleic Acids Res 38, D26-32. https://doi.org/10.1093/nar/gkp996
- Emmanuel, E., and Levy, A.A. (2002). Tomato mutants as tools for functional genomics. Curr Opin Plant Biol 5, 112-117. https://doi.org/10.1016/S1369-5266(02)00237-6
- Pnueli, L., Carmel-Goren, L., Hareven, D., Gutfinger, T., Alvarez, J., Ganal, M., Zamir, D., and Lifschitz, E. (1998). The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125, 1979-1989.
- Iijima, Y., Nakamura, Y., Ogata, Y., Tanaka, K., Sakurai, N., Suda, K., Suzuki, T., Suzuki, H., Okazaki, K., Kitayama, M., et al. (2008). Metabolite annotations based on the integration of mass spectral information. Plant J 54, 949-962. https://doi.org/10.1111/j.1365-313X.2008.03434.x
- Van der Hoeven, R., Ronning, C., Giovannoni, J., Martin, G., and Tanksley, S. (2002). Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14, 1441-1456. https://doi.org/10.1105/tpc.010478
- Scott, J.W., and Harbaugh, B.K. (1989). Micro-Tom A miniature dwarf tomato. Agricultural Experiment Station, Institute of Food and Agricultural Sciences, University of Florida Circular S370, 1-6.
- Meissner, R., Jacobson, Y., Melmed, S., Levyatuv, S., Shalev, G., Ashri, A., Elkind, Y., and Levy, A.A. (1997). A new model system for tomato genetics. Plant J 12, 1465-1472. https://doi.org/10.1046/j.1365-313x.1997.12061465.x
- Dan, Y., Yan, H., Munyikwa, T., Dong, J., Zhang, Y., and Armstrong, C.L. (2006). MicroTom--a high-throughput model transformation system for functional genomics. Plant Cell Rep 25, 432-441. https://doi.org/10.1007/s00299-005-0084-3
- Sun, H.J., Uchii, S., Watanabe, S., and Ezura, H. (2006). A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47, 426-431. https://doi.org/10.1093/pcp/pci251
- Mathews, H., Clendennen, S.K., Caldwell, C.G., Liu, X.L., Connors, K., Matheis, N., Schuster, D.K., Menasco, D.J., Wagoner, W., Lightner, J., et al. (2003). Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15, 1689-1703. https://doi.org/10.1105/tpc.012963
- Bishop, G.J., Harrison, K., and Jones, J.D. (1996). The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family. Plant Cell 8, 959-969. https://doi.org/10.1105/tpc.8.6.959
- Bishop, G.J., Nomura, T., Yokota, T., Harrison, K., Noguchi, T., Fujioka, S., Takatsuto, S., Jones, J.D., and Kamiya, Y. (1999). The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci U S A 96, 1761-1766. https://doi.org/10.1073/pnas.96.4.1761
- Marti, E., Gisbert, C., Bishop, G.J., Dixon, M.S., and Garcia-Martinez, J.L. (2006). Genetic and physiological characterization of tomato cv. Micro-Tom. J Exp Bot 57, 2037-2047. https://doi.org/10.1093/jxb/erj154
- Matsukura, C., Aoki, K., Fukuda, N., Mizoguchi, T., Asamizu, E., Saito, T., Shibata, D., and Ezura, H. (2008). Comprehensive resources for tomato functional genomics based on the miniature model tomato micro-tom. Curr Genomics 9, 436-443. https://doi.org/10.2174/138920208786241225
- Watanabe, S., Mizoguchi, T., Aoki, K., Kubo, Y., Mori, H., Imanishi, S., Yamazaki, Y., Shibata, D., and Ezura, H. (2007). Ethylmethanesulfonate (EMS) mutagenesis of Solanum lycopersicum cv. Micro-Tom for large-scale mutant screens. Plant Biotechnology 24, 33-38. https://doi.org/10.5511/plantbiotechnology.24.33
- Till, B.J., Zerr, T., Comai, L., and Henikoff, S. (2006). A protocol for TILLING and Ecotilling in plants and animals. Nat Protoc 1, 2465-2477 https://doi.org/10.1038/nprot.2006.329
- Gady, A.L., Hermans, F.W., Van de Wal, M.H., van Loo, E.N., Visser, R.G., and Bachem, C.W. (2009). Implementation of two high through-put techniques in a novel application: detecting point mutations in large EMS mutated plant populations. Plant Methods 5, 13. https://doi.org/10.1186/1746-4811-5-13
- Piron, F., Nicolai, M., Minoia, S., Piednoir, E., Moretti, A., Salgues, A., Zamir, D., Caranta, C., and Bendahmane, A. (2010). An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS One 5, e11313. https://doi.org/10.1371/journal.pone.0011313
- Rigola, D., van Oeveren, J., Janssen, A., Bonne, A., Schneiders, H., van der Poel, H.J., van Orsouw, N.J., Hogers, R.C., de Both, M.T., and van Eijk, M.J. (2009). High-throughput detection of induced mutations and natural variation using KeyPoint technology. PLoS One 4, e4761. https://doi.org/10.1371/journal.pone.0004761
- Sreelakshmi, Y., Gupta, S., Bodanapu, R., Chauhan, V.S., Hanjabam, M., Thomas, S., Mohan, V., Sharma, S., Srinivasan, R., and Sharma, R. (2010). NEATTILL: A simplified procedure for nucleic acid extraction from arrayed tissue for TILLING and other high-throughput reverse genetic applications. Plant Methods 6, 3. https://doi.org/10.1186/1746-4811-6-3
- Aoki, K., Yano, K., Suzuki, A., Kawamura, S., Sakurai, N., Suda, K., Kurabayashi, A., Suzuki, T., Tsugane, T., Watanabe, M., et al. (2010). Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genomics 11, 210. https://doi.org/10.1186/1471-2164-11-210
- Ozaki, S., Ogata, Y., Suda, K., Kurabayashi, A., Suzuki, T., Yamamoto, N., Iijima, Y., Tsugane, T., Fujii, T., Konishi, C., et al. (2010). Coexpression analysis of tomato genes and experimental verification of coordinated expression of genes found in a functionally enriched coexpression module. DNA Res 17, 105-116. https://doi.org/10.1093/dnares/dsq002
- Mueller, L.A., Solow, T.H., Taylor, N., Skwarecki, B., Buels, R., Binns, J., Lin, C., Wright, M.H., Ahrens, R., Wang, Y., et al. (2005). The SOL Genomics Network: a comparative resource for Solanaceae biology and beyond. Plant Physiol 138, 13101317.
- Mueller, L.A., Tanksley, S.D., Giovannoni, J.J., van Eck, J., Stack, S., Choi, D., Kim, B.D., Chen, M., Cheng, Z., Li, C., et al. (2005). The Tomato Sequencing Project, the first cornerstone of the International Solanaceae Project (SOL). Comp Funct Genomics 6, 153-158. https://doi.org/10.1002/cfg.468
- Minoia, S., Petrozza, A., D'Onofrio, O., Piron, F., Mosca, G., Sozio, G., Cellini, F., Bendahmane, A., and Carriero, F. (2010). A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Res Notes 3, 69. https://doi.org/10.1186/1756-0500-3-69
- Menda, N., Semel, Y., Peled, D., Eshed, Y., and Zamir, D. (2004). In silico screening of a saturated mutation library of tomato. Plant J 38, 861-872. https://doi.org/10.1111/j.1365-313X.2004.02088.x
Cited by
- Red/Far Red Light Controls Arbuscular Mycorrhizal Colonization via Jasmonic Acid and Strigolactone Signaling 2015, https://doi.org/10.1093/pcp/pcv135
- Functional genomics of tomato in a post-genome-sequencing phase vol.63, pp.1, 2013, https://doi.org/10.1270/jsbbs.63.14
- From randomly to inevitable: Accelerating tomato breeding by comprehensive tools and information vol.63, pp.1, 2013, https://doi.org/10.1270/jsbbs.63.1
- Technological progress in Japanese horticultural production and its academic aspects pp.1129, 2016, https://doi.org/10.17660/ActaHortic.2016.1129.2
- SABRE2: A Database Connecting Plant EST/Full-Length cDNA Clones with Arabidopsis Information vol.55, pp.1, 2014, https://doi.org/10.1093/pcp/pct177
- Structural analyses of the tomato genome vol.30, pp.3, 2011, https://doi.org/10.5511/plantbiotechnology.13.0707a
- Mutation Breeding in Tomato: Advances, Applicability and Challenges vol.8, pp.5, 2019, https://doi.org/10.3390/plants8050128