References
- Lambrechts MG, Pretorius IS. Yeast and its importance to wine aroma: a review. S Afr J Enol Vitic 2000;21:97-129.
- Romano P, Fiore C, Caruso PM, Capece A. Function of yeast species and strains in wine flavour. Int J Food Microbiol 2003;86:169-80. https://doi.org/10.1016/S0168-1605(03)00290-3
- Fleet GH. Yeast interactions and wine flavour. Int J Food Microbiol 2003;86:11-22. https://doi.org/10.1016/S0168-1605(03)00245-9
- Bae SD, Bae SM, Kim JS. Fermentation characteristics of rice-grape wine fermented with rice and grape. Korean J Food Sci Technol 2004;36:616-23.
- Kim EJ, Kim YH, Kim JW, Lee HH, Ko YJ, Park MH, Lee JO, Kim YS, Ha YL, Ryu CH. Optimization of fermentation process and quality properties of wild grape wine. J Korean Soc Food Sci Nutr 2007;36:366-70. https://doi.org/10.3746/jkfn.2007.36.3.366
- Towantakavanit K, Park YK, Park YS. Quality changes in 'Hayward' kiwifruit wine fermented by different yeast strains. Korean J Food Preserv 2010;17:174-81.
- Fleet GH, Heard GM. Yeasts: growth during fermentation. In: Fleet GH, editor. Wine microbiology and biotechnology. Amsterdam: Harwood Academic Publishers; 1993. p. 27-54.
- Zuzuarregui A, del Olmo M. Analysis of stress resistance under laboratory conditions constitute a suitable criterion for wine yeast selection. Antonie van Leewenhoek 2004;85:271-80. https://doi.org/10.1023/B:ANTO.0000020162.21248.53
-
Nguyen VD, Min B, Kyung M, Park JT, Lee BH, Choi CH, Seo NS, Kim YR, Ahn DU, Lee SJ, et al. Identification of a naturally-occurring 8-[
${\alpha}$ -D-glucopyranosyl-(1${\rightarrow}$ 6)-${\beta}$ -D-glucopyranosyl] daidzein from cultivated kudzu root. Phytochem Anal 2009;20:450-5. - Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 1998;73:331-71. https://doi.org/10.1023/A:1001761008817
- Attfield PV. Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 1997;15:1351-7. https://doi.org/10.1038/nbt1297-1351
- Jung HK, Park CD, Bae DH, Hong JH. Isolation of alcoholtolerant amylolytic Saccharomyces cerevisiae and its application to alcohol fermentation. Food Sci Biotechnol 2008;17:1160-4.
- Kang TY, Oh GH, Kim K. Isolation and identification of yeast strains producing high concentration of ethanol with high viability. Korean J Appl Microbiol Biotechnol 2000;28:309-15.
- Osho A. Ethanol and sugar tolerance of wine yeasts isolated from fermenting cashew apple juice. Afr J Biotechnol 2005;4:660-2. https://doi.org/10.5897/AJB2005.000-3119
- Hockney RC, Freeman RF. Gratuitous catabolite repression by glucosamine of maltose utilization in Saccharomyces cerevisiae. J Gen Microbiol 1980;121:479-82.
- Hostinova E. Amylolytic enzymes produced by the yeast Saccharomycopsis fibuligera. Biologia (Bratisl) 2002;57(Suppl 11):247-51.
- Laluce C, Bertolini MC, Ernandes JR, Martini AV, Martini A. New amylolytic yeast strains for starch and dextrin fermentation. Appl Environ Microbiol 1988;54:2447-51.
- Ju MN, Hong SW, Kim KT, Yum SK, Kim GW, Chung KS. Breeding of yeast strain with starch utilizing and alcohol fermenting ability by protoplast fusion. Korean J Microbiol Biotechnol 2008;36:158-64.
- Rojas V, Gil JV, Pinaga F, Manzanares P. Acetate ester formation in wine by mixed cultures in laboratory fermentations. Int J food Microbiol 2003;86:181-8. https://doi.org/10.1016/S0168-1605(03)00255-1
- Kurtzman CP. Phylogeny of the ascomycetous yeasts and the renaming of Pichia anomala to Wickerhamomyces anomalus. Antonie van Leeuwenhoek 2011;99:13-23. https://doi.org/10.1007/s10482-010-9505-6
- Ugliano M, Henschke PA. Yeasts and wine flavour. In: Moreno-Arribas MV, Polo MC, editors. Wine chemistry and biochemistry. Amsterdam: Springer; 2009. p. 366-71.
- Daniel HM, Moons MC, Huret S, Vrancken G, De Vuyst L. Wickerhamomyces anomalus in the sourdough microbial ecosystem. Antonie van Leeuwenhoek 2011;99:63-73. https://doi.org/10.1007/s10482-010-9517-2
- Fugelsang KC, Edwards CG. Wine microbiology: practical applications and procedures. Amsterdam: Springer; 2009. p. 84-5.
- Kim OM, Woo SM, Park YK, Jeong YJ. Alcohol fermentation characteristics of the Korean native nulberry (Morus spp.). J Food Sci Nutr 2006;11:166-70. https://doi.org/10.3746/jfn.2006.11.2.166
Cited by
- vol.41, pp.3, 2013, https://doi.org/10.5941/MYCO.2013.41.3.139
- Biotechnological potential of yeast isolates from cachaça: the Brazilian spirit vol.42, pp.2, 2015, https://doi.org/10.1007/s10295-014-1528-y
- Correlation between ethanol stress and cellular fatty acid composition of alcohol producing non-Saccharomyces in comparison with Saccharomyces cerevisiae by multivariate techniques vol.52, pp.10, 2015, https://doi.org/10.1007/s13197-015-1762-y
- A Candida guilliermondii lysine hyperproducer capable of elevated citric acid production vol.32, pp.5, 2016, https://doi.org/10.1007/s11274-016-2031-6
- Isolation, identification of yeast strains producing bioethanol and improvement of bioethanol production on cheese whey / Biyoetanol üreten maya türlerinin izolasyonu, tanılaması ve peynir altı suyunda biyoetanol üretiminin sağlıklaştırılması vol.41, pp.3, 2016, https://doi.org/10.1515/tjb-2016-0026
- Microbial and Chemical Diversity of Traditional Non-Cereal Based Alcoholic Beverages of Sub-Saharan Africa vol.4, pp.2, 2018, https://doi.org/10.3390/beverages4020036