References
- Braun U, Cook RT, Inman AJ, Shin HD. The taxonomy of the powdery mildew fungi. In: Belanger RR, Bushnell WR, Dik AJ, Carver TL, editors. The powdery mildews. A comprehensive treatise. St. Paul: APS Press; 2002. p. 13-55.
- Jarvis W, Gubler WG, Grove GG. Epidemiology of powdery mildews in agricultural ecosystems. In: Belanger RR, Bushnell WR, Dik AJ, Carver TL, editors. The powdery mildews. a comprenhensive treatise. St. Paul: APS Press; 2002. p. 169-99.
- McGrath MT. Successful management of powdery mildew in pumpkin with disease threshold-based fungicide programs. Plant Dis 1996;80:910-6. https://doi.org/10.1094/PD-80-0910
- Zitter TA, Hopkins DL, Thomas CE. Compendium of cucurbit diseases. St Paul: APS Press; 1996.
- Bragg, PD, Rannie DJ. The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 1974;20:883-9. https://doi.org/10.1139/m74-135
- Thurman RB, Gerba CP, Bitton G. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit Rev Environ Sci Technol 1989;18:295-315. https://doi.org/10.1080/10643388909388351
- Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 2000;52:662-8. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
- Mirkin CA, Taton TA. Semiconductors meet biology. Nature 2000;405:626-7. https://doi.org/10.1038/35015190
- Richards RM. Antimicrobial action of silver nitrate. Microbios 1981;31:83-91.
- Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2003;311:622-7.
- Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanobiotechnology 2005;16:2346-53. https://doi.org/10.1088/0957-4484/16/10/059
- Samuel U, Guggenbichler JP. Prevention of catheter related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 2004;23(Suppl 1):S75-8. https://doi.org/10.1016/j.ijantimicag.2003.12.004
- Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, Gu MB. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 2008;4:746-50. https://doi.org/10.1002/smll.200700954
- Storz G, Imlay JA. Oxidative stress. Curr Opin Microbiol 1999;2:188-94. https://doi.org/10.1016/S1369-5274(99)80033-2
Cited by
- and Pepper Anthracnose Disease in Field vol.39, pp.3, 2011, https://doi.org/10.5941/MYCO.2011.39.3.194
- Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum vol.26, pp.6, 2013, https://doi.org/10.1007/s10534-013-9667-6
- Particle-Size Dependent Accumulation and Trophic Transfer of Cerium Oxide through a Terrestrial Food Chain vol.48, pp.22, 2014, https://doi.org/10.1021/es503792f
- Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? vol.54, pp.9, 2014, https://doi.org/10.1002/jobm.201400298
- vol.105, pp.9, 2015, https://doi.org/10.1094/PHYTO-01-15-0006-R
- A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield vol.17, pp.2, 2015, https://doi.org/10.1007/s11051-015-2907-7
- Nanoparticles as Alternative Pesticides: Concept, Manufacturing and Activities vol.43, pp.4, 2015, https://doi.org/10.4489/KJM.2015.43.4.207
- Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture vol.99, pp.3, 2015, https://doi.org/10.1007/s00253-014-6296-0
- Efficacy of Some Nanoparticles to Control Damping-off and Root Rot of Sugar Beet in El-Behiera Governorate vol.11, pp.1, 2017, https://doi.org/10.3923/ajppaj.2017.35.47
- Antimicrobial potential of consolidation polymers loaded with biological copper nanoparticles vol.16, pp.1, 2016, https://doi.org/10.1186/s12866-016-0766-8
- by Stabilization vol.2016, pp.1687-4129, 2016, https://doi.org/10.1155/2016/7135852
- The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium vol.3, pp.5, 2016, https://doi.org/10.1039/C6EN00146G
- Antimicrobial kinetics of Alstonia scholaris bark extract-mediated AgNPs vol.6, pp.5, 2016, https://doi.org/10.1007/s13204-015-0483-x
- Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice vol.11, pp.5, 2017, https://doi.org/10.1080/17435390.2017.1344740
- Biosynthesis of nanosilver using Chaetomium globosum and its application to control Fusarium wilt of tomato in the greenhouse vol.11, pp.6, 2017, https://doi.org/10.1049/iet-nbt.2016.0213
- Antifungal effect of green synthesised silver nanoparticles against Setosphaeria turcica vol.11, pp.7, 2017, https://doi.org/10.1049/iet-nbt.2016.0200
- Biogenic synthesis, characterisation and antifungal activity of gum kondagogu-silver nano bio composite construct: assessment of its mode of action vol.11, pp.7, 2017, https://doi.org/10.1049/iet-nbt.2017.0043
- Trichogenic-selenium nanoparticles enhance disease suppressive ability of Trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-02737-6
- The Effect of Silver and Copper Nanoparticles on the Condition of English Oak (Quercus robur L.) Seedlings in a Container Nursery Experiment vol.8, pp.9, 2017, https://doi.org/10.3390/f8090310
- Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities pp.00225142, 2018, https://doi.org/10.1002/jsfa.8749
- Nanomaterials for water cleaning and desalination, energy production, disinfection, agriculture and green chemistry pp.1610-3661, 2017, https://doi.org/10.1007/s10311-017-0656-9
- Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens pp.1614-7499, 2018, https://doi.org/10.1007/s11356-017-9581-5
- Bioactivity and Biomodification of Ag, ZnO, and CuO Nanoparticles with Relevance to Plant Performance in Agriculture vol.8, pp.6, 2012, https://doi.org/10.1089/ind.2012.0028
- vol.46, pp.1, 2018, https://doi.org/10.1080/12298093.2018.1454011
- Inhibition of Fusarium oxysporum by AgNPs biosynthesised using Cinnamomum camphora fruit extract pp.1751-875X, 2018, https://doi.org/10.1049/iet-nbt.2018.5065
- The Future of Nanotechnology in Plant Pathology vol.56, pp.1, 2018, https://doi.org/10.1146/annurev-phyto-080417-050108
- Effects of Zn/B nanofertilizer on biophysical characteristics and growth of coffee seedlings in a greenhouse vol.44, pp.8, 2018, https://doi.org/10.1007/s11164-018-3342-z