References
- Duff SJ, Murray WD. Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol 1996;55:1-33. https://doi.org/10.1016/0960-8524(95)00122-0
- Jones RP, Pamment N, Greenfield PF. Alcohol fermentation by yeasts: the effect of environmental and other variables. Process Biochem 1981;16:42-9.
- Rogers PL, Lee KJ, Tribe DE. High productivity ethanol fermentation with Zymomonas mobilis. Process Biochem 1980;15:7-11.
- Shin D, Yoo A, Kim SW, Yang DR. Cybernetic modeling of simultaneous saccharification and fermentation for ethanol production from steam-exploded wood with Brettanomyces custersii. J Microbiol Biotechnol 2006;16:1355-61.
- Durand H, Clanet M, Tiraby G. Genetic improvement of Trichoderma reesei for large scale cellulase production. Enzyme Microb Technol 1988;10:341-6. https://doi.org/10.1016/0141-0229(88)90012-9
- Kang SW, Park YS, Lee JS, Hong SI, Kim SW. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 2004;91:153-6. https://doi.org/10.1016/S0960-8524(03)00172-X
- Sohail M, Siddiqi R, Ahmad A, Khan SA. Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnol 2009;25:437-41. https://doi.org/10.1016/j.nbt.2009.02.002
- Sun Y, Cheng JY. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 2002;83:1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
- Zhang YH, Himmel ME, Mielenz JR. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 2006;24:452-81. https://doi.org/10.1016/j.biotechadv.2006.03.003
- Parekh S, Vinci VA, Strobel RJ. Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 2000;54:287-301. https://doi.org/10.1007/s002530000403
- Kuhad RC, Kumar M, Singh A. A hypercellulolytic mutant of Fusarium oxysporum. Lett Appl Microbiol 1994;19:397-400. https://doi.org/10.1111/j.1472-765X.1994.tb00486.x
- Vu VH, Pham TA, Kim K. Fungal strain improvement for cellulase production using repeated and sequential mutagenesis. Mycobiology 2009;37:267-71. https://doi.org/10.4489/MYCO.2009.37.4.267
- Pandey A. Solid-state fermentation. New Delhi: Wiley Eastern Limited; 1994. p. 12-7.
-
Babu KR, Satyanarayana T.
${\alpha}$ -Amylase production by thermophilic Bacilluscoagulans in solid state fermentation. Process Biochem 1995;30:305-9. https://doi.org/10.1016/0032-9592(95)87038-5 - Grajek W. Comparative studies on the production of cellulases by thermophilic fungi in submerged and solid-state fermentation. Appl Microbiol Biotechnol 1987;26:126-9. https://doi.org/10.1007/BF00253895
- Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959;31:426-8. https://doi.org/10.1021/ac60147a030
- Rubinder K, Chadha BS, Singh N, Saini HS, Singh S. Amylase hyperproduction by deregulated mutants of the thermophilic fungus Thermomyces lanuginosus. J Ind Microbiol Biotechnol 2002;29:70-4. https://doi.org/10.1038/sj.jim.7000270
- Vu VH, Pham TA, Kim K. Improvement of a fungal strain by repeated and sequential mutagenesis and optimization of solid-state fermentation for the hyper-production of rawstarch-digesting enzyme. J Microbiol Biotechnol 2010;20:718-26. https://doi.org/10.4014/jmb.0908.08016
- Singh A, Abidi AB, Darmwal NS, Agrawal AK. Influence of nutritional factors of cellulase production from natural lignocellulosic residues by Aspergillus niger. Agric Biol Res 1991;7:19-27.
- Asgher M, Asad MJ, Legge RL. Enhanced lignin peroxidase synthesis by Phanerochaete chrysosporium in solid state bioprocessing of a lignocellulosic substrate. World J Microbiol Biotechnol 2006;22:449-53. https://doi.org/10.1007/s11274-005-9055-7
- Frausto da Silva JJ, Williams RJ. The biological chemistry of the elements: the inorganic chemistry of life. New York: Clarendon Press; 1993.
Cited by
- Statistical optimization of cellulases production by Penicillium chrysogenum QML-2 under solid-state fermentation and primary application to chitosan hydrolysis vol.28, pp.3, 2012, https://doi.org/10.1007/s11274-011-0919-8
- Improvement of Aspergillus oryzae NRRL 3484 by mutagenesis and optimization of culture conditions in solid-state fermentation for the hyper-production of extracellular cellulase vol.106, pp.5, 2014, https://doi.org/10.1007/s10482-014-0255-8
- Fermentation Optimization and Unstructured Kinetic Model for Cellulase Production by Rhizopus stolonifer var. reflexus TP-02 on Agriculture By-Products vol.177, pp.8, 2015, https://doi.org/10.1007/s12010-015-1839-0
- Mutagenesis breeding of high echinocandin B producing strain and further titer improvement with culture medium optimization vol.38, pp.10, 2015, https://doi.org/10.1007/s00449-015-1425-4
- Cellulase Production from Species of Fungi and Bacteria from Agricultural Wastes and Its Utilization in Industry: A Review vol.04, pp.02, 2016, https://doi.org/10.4236/aer.2016.42005
- The use of Amazon fungus (Trametes sp.) in the production of cellulase and xylanase vol.15, pp.20, 2016, https://doi.org/10.5897/AJB2015.14624
- Cost-effective cellulase production using Parthenium hysterophorus biomass as an unconventional lignocellulosic substrate vol.7, pp.1, 2017, https://doi.org/10.1007/s13205-017-0604-1
- Enzymatic saccharification of pretreated rice straw by cellulases from Aspergillus niger BK01 vol.7, pp.3, 2017, https://doi.org/10.1007/s13205-017-0755-0
- Cellulase Enzyme Production From Rice Straw Using Solid State Fermentation and Fungi Aspergillus niger ITBCC L74 vol.156, pp.2261-236X, 2018, https://doi.org/10.1051/matecconf/201815601010
- IIPC 324 under SSF via saccharification of acid-pretreated sugarcane bagasse pp.1759-7277, 2021, https://doi.org/10.1080/17597269.2018.1449063
- Efficacy and cost study of green fungicide formulated from crude beta-glucosidase pp.1735-2630, 2018, https://doi.org/10.1007/s13762-018-2084-1
- Screening of potential IL-tolerant cellulases and their efficient saccharification of IL-pretreated lignocelluloses vol.8, pp.54, 2018, https://doi.org/10.1039/C8RA05729J
- under low moisture conditions during solid-state fermentation vol.68, pp.2, 2019, https://doi.org/10.1111/lam.13104