DOI QR코드

DOI QR Code

Enhancing Effect of Shimizuomyces paradoxus on Seed Germination and Seedling Growth of Canola, Plant Growth of Cucumber, and Harvest of Tomato

  • Sung, Gi-Ho (Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Shrestha, Bhushan (Green Energy Mission/Nepal, Anam Nagar) ;
  • Park, Ki-Byung (NGEO Environ Seongnam) ;
  • Han, Sang-Kuk (Division of Forest Biodiversity, Korea National Arboretum) ;
  • Sung, Jae-Mo (Cordyceps Institute of Mushtech)
  • Received : 2010.12.08
  • Accepted : 2011.02.16
  • Published : 2011.03.31

Abstract

Shimizuomyces paradoxus showed no inhibitory effect against plant pathogen fungi, such as Fusarium oxysporum f. sp. lycopersici and Alternaria solani. The S. paradoxus culture filtrate showed higher seed germination and seedling growth rates in canola than distilled water and potato-dextrose broth. A conidial suspension of $1.0{\times}10^4/mL$ resulted in the highest growth stimulating effects on total plant length, and fresh and dry weight of shoots and roots in cucumber, when compared to the highest suspension concentration. Total plant length and shoot weight increased with the foliar spray treatment, and root length and root weight increased by simultaneous treatments of soil drenching and foliar spray in cucumber. Lower concentrations of the S. paradoxus conidial suspension increased the harvest of tomato fruit.

Keywords

References

  1. Kobayasi Y. Revision of the genus Cordyceps and its allies 1. Bull Nat Sci Mus Tokyo Ser B (Bot) 1981;7:1-13.
  2. Kobayasi Y. Miscellaneous notes of fungi (4). J Jpn Bot 1984;59:31-2.
  3. Sung JM. The insects-born fungus of Korea in color. Seoul: Kyohak Publishing Co., Ltd.; 1996.
  4. Li CR, Chen AH, Zuo DP, Fan MZ, Li ZZ. Species of Cordyceps and Shimizuomyces new to China. Mycosystema 2008;27:464-8.
  5. Sung GH, Shrestha B, Park KB, Sung JM. Cultural characteristics of Shimizuomyces paradoxus collected from Korea. Mycobiology 2010;38:189-94. https://doi.org/10.4489/MYCO.2010.38.3.189
  6. Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 2007;57:5-59. https://doi.org/10.3114/sim.2007.57.01
  7. Johnson D, Sung GH, Hywel-Jones NL, Luangsa-Ard JJ, Bischoff JF, Kepler RM, Spatafora JW. Systematics and evolution of the genus Torrubiella (Hypocreales, Ascomycota). Mycol Res 2009;113(Pt 3):279-89. https://doi.org/10.1016/j.mycres.2008.09.008
  8. Meera MS, Shivanna MB, Kageyama K, Hyakumachi M. Plant growth promoting fungi from Zoysiagrass rhizosphere as potential inducers of systemic resistance in cucumbers. Phytopathology 1994;84:1399-406. https://doi.org/10.1094/Phyto-84-1399
  9. Liu L, Kloepper JW, Tuzun S. Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 1995;85:843-7. https://doi.org/10.1094/Phyto-85-843
  10. Brown ME. Seed and root bacterization. Annu Rev Phytopathol 1974;12:181-97. https://doi.org/10.1146/annurev.py.12.090174.001145
  11. Burr TJ, Schroth MN, Suslow TV. Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopatholgy 1978;68:1377-83. https://doi.org/10.1094/Phyto-68-1377
  12. Kloepper JW, Schroth MN. Development of a powder formulation of rhizobacteria for inoculation of potato seed pieces. Phytopathology 1981;71:590-2. https://doi.org/10.1094/Phyto-71-590
  13. Burr TJ, Caesar A. Beneficial plant bacteria. Crit Rev Plant Sci 1984;2:1-20. https://doi.org/10.1080/07352688409382186
  14. Lifshitz R, Kloepper JW, Kozlowski M, Simonson C, Carlson J, Tipping EM, Zaleska I. Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol 1987;33:390-5. https://doi.org/10.1139/m87-068
  15. Eklund E. Secondary effects of some Pseudomonads in the rhizoplane of peat grown cucumber plants. Acta Agric Scand Suppl 1970;17:1-57.
  16. Kavimandan SK, Gaur AC. Effect of seed inoculation with Pseudomonas sp. on phosphate uptake and yield of maize. Curr Sci 1971;40:439-40.
  17. Brown ME. Plant growth substances produced by microorganisms of soil and rhizosphere. J Appl Bacteriol 1972;35:443-51. https://doi.org/10.1111/j.1365-2672.1972.tb03721.x
  18. Frommel MI, Nowak J, Lazarovits G. Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum spp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 1991;96:928-36. https://doi.org/10.1104/pp.96.3.928
  19. Woo SL, Scala F, Ruocco M, Lorito M. The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 2006;96:181-5. https://doi.org/10.1094/PHYTO-96-0181
  20. Windham MT, Elad Y, Baker R. A mechanism for increased plant growth induced by Trichoderma spp. Phytopathology 1986;76:518-21. https://doi.org/10.1094/Phyto-76-518
  21. Lorito M, Harman GE, Hayes CK, Broadway RM, Tronsmo A, Woo SL, Di Pietro A. Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 1993;83:302-7. https://doi.org/10.1094/Phyto-83-302
  22. Yedidia I, Srivastva AK, Kapulnik Y, Chet I. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 2001;235: 235-42. https://doi.org/10.1023/A:1011990013955
  23. Lo CT, Lin CY. Screening strains of Trichoderma spp. for plant growth enhancement in Taiwan. Plant Pathol Bull 2002;11:215-20.
  24. Harman GE, Lorito M, Lynch JM. Uses of Trichoderma spp. to alleviate or remediate soil and water pollution. Adv Appl Microbiol 2004;56:313-30. https://doi.org/10.1016/S0065-2164(04)56010-0
  25. Whipps JM. Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 2001;52(Suppl 1):487-511. https://doi.org/10.1093/jxb/52.suppl_1.487
  26. Lu Z, Tombolini R, Woo S, Zeilinger S, Lorito M, Jansson JK. In vivo study of Trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Appl Environ Microbiol 2004;70:3073-81. https://doi.org/10.1128/AEM.70.5.3073-3081.2004
  27. van Loon LC. Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 2007;119:243-54. https://doi.org/10.1007/s10658-007-9165-1
  28. Buyer JS, Kratzke MG, Sikora LJ. A method for detection of pseudobactin, the siderophore produced by a plant-growth-promoting Pseudomonas strain, in the barley rhizosphere. Appl Environ Microbiol 1993;59:677-81.

Cited by

  1. Notes for genera: Ascomycota vol.86, pp.1, 2017, https://doi.org/10.1007/s13225-017-0386-0