DOI QR코드

DOI QR Code

ACC oxidase 발현 억제 식물체에서 폴리아민 생합성 증가에 의한 스트레스 저항성 증강

Enhanced tolerance through increasing polyamine contents in transgenic tobacco plants with antisense expression of ACC oxidase gene

  • 위수진 (순천대학교 생명산업과학대학 생물학과) ;
  • 박기영 (순천대학교 생명산업과학대학 생물학과)
  • Wi, Soo-Jin (Department of Biology, Sunchon National University) ;
  • Park, Ky-Young (Department of Biology, Sunchon National University)
  • 투고 : 2011.03.14
  • 심사 : 2011.03.19
  • 발행 : 2011.03.31

초록

에틸렌 생합성 효소인 ACC oxidase 유전자인 CAO cDNA가 antisense 방향으로 도입된 형질전환 담배 식물체는 endogenous한 NtACO의 발현 및 에틸렌 생합성이 모두 억제되었다. 또한 폴리아민 생합성 효소인 SAMDC의 유전자 발현 및 효소 활성이 증가하였고 spermidine 함량이 증가하였다. 이러한 결과는 에틸렌 생합성의 감소로 인하여 세포 내 폴리아민 함량의 변화가 유도되는 경쟁적 관계로 spermidine이 증가하였고 이것은 SAMDC의 발현 및 활성 증가를 유도하였다고 여겨진다. 또한 이들 형질전환 식물체는 담배 역병균에 대한 저항 효과 뿐만 아니라 PR 단백질의 유전자들의 발현양이 증가하였는데 이는 에틸렌 감소에 유도되는 폴리아민 중에서도 spermidine의 증가가 PR 단백질의 유전자들의 발현을 촉진시키고 그 결과 병원균 감염에 대한 저항성을 유도하는 기작이 작동한 것으로 여겨진다. Spermidine을 합성하는데 중요하게 작용하는 SAMDC의 활성을 억제하는 MGBG를 처리한 경우에는 PR1a 발현이 억제된 경우에서 이 기작의 가능성을 확인하였다. 결론적으로 병원균 감염에 대한 과정에서 spermidine의 생합성이 증가하게 되면 PR 단백질 등 스트레스 저항성 관련 단백질들이 유도되어 스트레스 저항성을 높일 수 있을 것으로 사료된다.

Antisense construct of cDNA for senescencerelated ACC oxidase (CAO) cDNA isolated from carnation flowers were introduced into tobacco by Agrobacteriummediated transformation. The decreasing expression of NtACO and the reduction of ethylene production were observed in these transgenic lines. In contrast, the SAMDC transcripts and spermidine content were increased. The findings that higher content of spermidine in the ethylene suppressed transgenic plants compared with wild-type should be directly resulted in the enhancement of SAMDC activity followed by the increased accumulation of SAMDC transcript. To investigate the pathogenic response in these transgenic plants, wild-type and transgenic plants were inoculated with Phytophthora parasitica pv. nicotianae. Transgenic plants suppressing ethylene production showed the increased resistance against fungal pathogen, comparing with wild-type plant. PR-protein genes expression in CAO-AS-2 and CAOAS-4 were also higher at the normal growth condition and pathogenic response than in wild-type plants. The results of higher spermidine content and SAMDC activity in transgenic plants, CAO-AS-2 and CAO-AS-4, support the possibility that an increase in spermidine content might induce the higher transcripts of PR-protein genes. This results agreed with the phenomena that spermidine promoted the expression of PR1a and a SAMDC inhibitor, MGBG, decreased the expression of PR1a in leaf discs. These results suggest that the resistance against fungal pathogen in transgenic tobacco impaired in ethylene production might be caused by increasing in polyamine, especially spermidine, biosynthesis.

키워드

참고문헌

  1. Bleecker (2000) A gaseous signal molecule in plants Annu Rev Cell Dev Biol 16:1-18 https://doi.org/10.1146/annurev.cellbio.16.1.1
  2. Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103-125 https://doi.org/10.1016/S0168-9452(98)00218-0
  3. Chen YF, Etheridge N, Schaller GE (2005) Ethylene signal transduction. Ann Bot 95:901-915 https://doi.org/10.1093/aob/mci100
  4. Chung KM, Igari K, Uchida N, Tasaka M (2008) New perspectives on plant defense responses through modulation of Developmental Pathways. Mol Cells 26:107-112
  5. Dat JF, Pellinen R, Beeckman T, Van De Cotte B, Langebartels C, Kangasjarvi J, Inze D, Van Breusegem F (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33:621-632 https://doi.org/10.1046/j.1365-313X.2003.01655.x
  6. Diaz J, ten Have A, van Kan JA (2002) The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol 129:1341-1351 https://doi.org/10.1104/pp.001453
  7. Edreva A (2005) Pathogenesis-related proteins: Research progress in the last 15 years. Gen Appl Plant Physiol 31:105-124
  8. Gallardo M, Munoz de Ruedaa P, Matillab A, Sanchez-Calle IM (1995) Alterations of the ethylene pathway in germinating thermoinhibited chick-pea seeds caused by the inhibition of polyamine biosynthesis. Plant Science 104:169-175 https://doi.org/10.1016/0168-9452(94)04019-D
  9. Hu WW, Gong H, Pua EC (2005) Molecular cloning and characterization of S-adenosylmethionine decarboxylase genes from mustard (Brassica juncea). Physiol Plant 124:25-40 https://doi.org/10.1111/j.1399-3054.2005.00500.x
  10. Kaur-Sawhney R, Tiburcio AF, Atabella T, Galston AW (2003) Polyamines in plants: an overview. J Cell Mol Biol 2:1-12
  11. Kim YJ, Lee SH, Park KY (2004) A leader intron and 115-bp promoter region necessary for expression of the carnation S-adenosylmethionine decarboxylase gene in the pollen of transgenic tobacco. FEBS Lett 578:229-235 https://doi.org/10.1016/j.febslet.2004.11.005
  12. Lee SH, Park KY (1991) Compensatory aspects of the biosynthesis of spermidine in tobacco cells in suspension culture. Plant Cell Physiol 32:523-531
  13. Moeder W, Barry CS, Tauriainen AA, Betz C, Tuomainen J, Utriainen M, Grierson D, Sandermann H, Langebartels C, Kangasjarvi J (2002) Ethylene synthesis regulated by biphasic induction of 1-aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato. Plant Physiol 130:1918-1926 https://doi.org/10.1104/pp.009712
  14. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  15. O'Donnell PJ, Jones JB, Antoine FR, Ciardi J, Klee HJ (2001) Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. Plant J 25:315-323 https://doi.org/10.1046/j.1365-313x.2001.00968.x
  16. Orozco-Cardenas ML, Narvaez-Vasquez J, Rhan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13: 179-191 https://doi.org/10.1105/tpc.13.1.179
  17. Pandey S, Ranade SA, Nagar PK, Kumar N (2000) Role of polyamines and ethylene as modulators of plant senescence. J Bio sci 25:291-299
  18. Summermatter K, Sticher L, Matrix JP (1995) Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv syringae. Plant Physiol 108:1379-1385 https://doi.org/10.1104/pp.108.4.1379
  19. Tassoni A, Watkins CB, Davies PJ (2006) Inhibition of the ethylene response by 1-MCP in tomato suggests that polyamines are not involved in delaying ripening, but may moderate the rate of ripening or over-ripening J Exp Bot 57:3313-3325 https://doi.org/10.1093/jxb/erl092
  20. Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant system in acid rain treated bean plants: protective role of exogenous polyammines. Plant Sci 151: 59-66 https://doi.org/10.1016/S0168-9452(99)00197-1
  21. Walters DR (2000) Polyamines in plant-microbe interactions. Physiol Mol Plant Pathol 57:137-146 https://doi.org/10.1006/pmpp.2000.0286
  22. Wi SJ, Park KY (2002) Antisense Expression of Carnation cDNA Encoding ACC Synthase or ACC Oxidase Enhances Polyamine Content and Abiotic Stress Tolerance in Transgenic Tobacco Plants. Mol Cells 13:209-220
  23. Wi SJ, Kim WT, Park KY (2006) Overexpression of carnation S-adenosylmethionine ecarboxylase gene generates a broadspectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep 25:1111-1121 https://doi.org/10.1007/s00299-006-0160-3
  24. Wi SJ, Jang SJ, Park KY (2010) Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in Nicotiana tabacum. Mol Cells 30:37-49 https://doi.org/10.1007/s10059-010-0086-z
  25. Yamakawa H, Kamada H, Satoh, M, Ohashi Y (1998) Spermine is a salicylate-independent endogenous inducer for both tobacco acidic pathogenesis-related proteins and resistance against tobacco mosaic virus infection. Plant Physiol 118:1213-1222 https://doi.org/10.1104/pp.118.4.1213