Dynamic Brittle Fracture Captured with Peridynamics: Crack Branching Angle & Crack Propagation Speed

페리다이나믹스 해석법을 통한 동적취성 파괴거동해석: 분기 균열각도와 균열 전파속도

  • 하윤도 (군산대학교 조선공학과) ;
  • 조선호 (서울대학교 조선해양공학과)
  • Received : 2011.10.28
  • Accepted : 2011.11.21
  • Published : 2011.12.31

Abstract

The bond-based peridynamic model is able to capture many of the essential characteristics of dynamic brittle fracture observed in experiments: crack branching, crack-path instability, asymmetries of crack paths, successive branching, secondary cracking at right angles from existing crack surfaces, etc. In this paper we investigate the influence of the stress waves on the crack branching angle and the velocity profile. We observe that crack branching in peridynamics evolves as the phenomenology proposed by the experimental evidence: when a crack reaches a critical stage(macroscopically identified by its stress intensity factor) it splits into two or more branches, each propagating with the same speed as the parent crack, but with a much reduced process zone.

본 논문에서는 결합 기반 페리다이나믹스 해석법을 사용하여 동적취성 파괴시뮬레이션을 수행하였다. 페리다이나믹스 모델은 분기 균열, 균열 불안정성, 균열 경로의 비대칭성, 연쇄 분기 균열, 2차 균열 전파 등 다양한 동적취성 파괴현상을 잘 해석해 낼 수 있다. 본 논문에서는 분기 균열의 분기 각도와 균열 전파속도에 대한 응력파의 영향에 대해 연구하였다. 극한 시점에 도달한 균열은 둘 이상으로 분기되어 전파되고 그 전파속도는 기존 균열의 전파속도와 크게 달라지지 않는다는 사실이 여러 실험을 통해서 입증이 되었다. 페리다이나믹스로 해석된 분기 균열은 실험을 통해 제안된 균열 전파현상들과 잘 부합되는 것을 확인할 수 있었다.

Keywords

References

  1. Belytschko, T., Chen, H., Xu, J., Zi, G. (2003) Dynamic Crack Propagation Based on Loss of Hyperbolicity and a New Discontinuous Enrichment, International Journal for Numerical Methods in Engineering, 58(12), pp.1873-1905. https://doi.org/10.1002/nme.941
  2. Bowden, F., Brunton, J., Field, J., Heyes, A. (1967) Controlled Fracture of Brittle Solids and Interruption of Electrical Current, Nature, 216, pp.38-42. https://doi.org/10.1038/216038a0
  3. Doll, W. (1975) Investigations of the Crack Branching Energy, International Journal of Fracture, 11(1), pp.184-186. https://doi.org/10.1007/BF00034729
  4. Field, J. (1971) Brittle Fracture: Its Study and Application, Contemporary Physics, 12(1), pp.1-31. https://doi.org/10.1080/00107517108205103
  5. Gerstle, W., Sau, N., Silling, S. (2007) Peridynamic Modeling of Concrete Structures, Nuclear Engineering and Design, 237(12-13), pp.1250-1258. https://doi.org/10.1016/j.nucengdes.2006.10.002
  6. Ha, YD., Bobaru, F. (2010) Studies of Dynamic Crack Propagation and Crack Branching with Peridynamics, International Journal of Fracture, 162(1), pp.229-244. https://doi.org/10.1007/s10704-010-9442-4
  7. Ha, YD., Bobaru, F. (2011) Characteristics of Dynamic Brittle Fracture Captured with Peridynamics, Engineering Fracture Mechanics, 78(6), pp.1156-1168. https://doi.org/10.1016/j.engfracmech.2010.11.020
  8. Livne, A., Ben-David, O., Fineberg, J. (2007) Oscillations in Rapid Fracture, Physical Review Letters, 98(12), p.124301. https://doi.org/10.1103/PhysRevLett.98.124301
  9. Ravi-Chandar, K. (2004) Dynamic Fracture, Elsevier.
  10. Ramulu, M., Kobayashi, A.S. (1985) Mechanics of Crack Curving and Branching a Dynamic Fracture Analysis, International Journal of Fracture, 27(3), pp.187-201. https://doi.org/10.1007/BF00017967
  11. Ramulu, M., Kobayashi, A., Kang, B., Barker, D. (1983) Further Studies on Dynamic Crack Branching, Experimental Mechanics, 23(4), pp.431-437. https://doi.org/10.1007/BF02330060
  12. Ravi-Chandar, K., Knauss, W. (1984a) An Experimental Investigation into Dynamic Fracture: III. on Steadystate Crack Propagation and Crack Branching, International Journal of Fracture, 26(2), pp.141-154. https://doi.org/10.1007/BF01157550
  13. Ravi-Chandar, K., Knauss, W. (1984b) An Experimental Investigation into Dynamic Fracture: IV. on the Interaction of Stress Waves with Propagating Cracks, International Journal of Fracture, 26(3), pp.189-200. https://doi.org/10.1007/BF01140627
  14. Silling, S. (2000) Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces, Journal of the Mechanics and Physics of Solids, 48(1), pp.175-209. https://doi.org/10.1016/S0022-5096(99)00029-0
  15. Silling, S., Askari, E. (2005) A Meshfree Method Based on the Peridynamic Model of Solid Mechanics, Computers and Structures, 83(17-18), pp.1526-1535. https://doi.org/10.1016/j.compstruc.2004.11.026
  16. Silling, S., Epton, M., Weckner, O., Xu, J., Askari, E. (2007) Peridynamic States and Constitutive Modeling, Journal of Elasticity, 88(2), pp.151-184. https://doi.org/10.1007/s10659-007-9125-1
  17. Scheibert, J., Guerra, C., Celarie, F., Dalmas, D., Bonamy, D. (2010) Brittle-quasibrittle Transition in Dynamic Fracture: An Energetic Signature, Physical Review Letters, 104(4), Jan, p.045501. https://doi.org/10.1103/PhysRevLett.104.045501