Three Dimensional Responses of Middle Rise Steel Building under Blast Loads

폭발하중을 받는 강구조 중층 건물의 응답 및 해석

  • 황영서 (삼성건설 CIVIL사업부 토목엔지니어링센터 도로/철도팀) ;
  • 이완수 (삼성건설 CIVIL사업부 토목엔지니어링센터 도로/철도팀)
  • Received : 2011.10.27
  • Accepted : 2011.12.01
  • Published : 2011.12.31

Abstract

It has been suggested that buildings designed for strong ground motions will also have improved resistance to air blast loads. As an initial attempt to quantify this behavior, the responses of a ten story steel building, designed for the 1994 building code, with lateral resistance provided by perimeter moment frames, is considered. An analytical model of the building is developed and the magnitude and distribution of blast loads on the structure are estimated using available computer software that is based on empirical methods. To obtain the relationship between pressure, time duration, and standoff distance, these programs are used to obtain an accurate model of the air blast loading. A hemispherical surface burst for various explosive weights and standoff distances is considered for generating the air blast loading and determining the structural response. Linear and nonlinear analyses are conducted for these loadings. Air blast demands on the structure are compared to current seismic guidelines. These studies present the displacement responses, story drifts, demand/capacity ratio and inelastic demands for this structure.

최근 들어 여러 테러에 의한 폭발사건에서 유발된 위험상황에서 보듯이 폭발에 의한 인명피해나 시설물의 손상은 우리가 고려하는 재해수준을 넘는 비참한 결과를 항상 수반한다. 하지만 폭발에 대한 구조물의 설계는 그 연구나 대책이 상당히 미비한 실정이다. 이에 미국건물설계기준(UBC94)을 바탕으로 내진설계(Welded Moment Resistant Frame)된 10층 건물의 폭발에 대한 해석적 모델을 제공하고자 한다. 현재 폭발하중의 정량적인 결과는 미국 육군(U.S.Department of Army)에서 개발된 경험적 방법에 기반을 둔 프로그램을 통해 폭간거리에 따른 하중의 크기와 분포를 알 수 있다. 본 연구에 사용된 폭원의 성격은 반구형 표면 폭발(Hemispherical Surface Burst)의 경우를 사용하였으며, 또한 선형 및 비선형 시간 이력해석을 통해 건물의 변위, 상대변위, 요구/수행비 및 비선형 거동에 대한 해석적 결과를 제공하였다. 또한 현재 사용되고 있는 내진기준(FEMA356)에 적용하여 소성힌지의 거동을 통해 폭발에 대한 건물의 성능수준을 예상하였다.

Keywords

References

  1. AISC (2001) Load and Resistance Factor Design Specification for Structural Steel. Buildings, AISC, Chicago, IL.
  2. Biggs, John M. (1964) Introduction to Structural Dynamics, McGrew-Hill.
  3. Federal Emergency Management Agency (2000) Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA356, November.
  4. Krauthammer, T. (1999) Blast-Resistant Structural Concrete and Steel Connections, International Journal of Impact Engineering, 22(9-10), pp.887-910. https://doi.org/10.1016/S0734-743X(99)00009-3
  5. Norris, C.H., Hansen, R,J., Holley, M.J., Biggs, J.M., Namyet, S., Minami, J.K. (1959) Structural Design for Dynamic Loads, McGraw Hill, New York.
  6. SAP2000 (2008) Version 13, Computers and Structures, Inc., Berkeley, CA.
  7. Smith, P.D., Hetherington, J.G. (1994) Blast and Ballistic Loading of Structures, Butterworth-Heinemann.
  8. U.S. Department of the Army (1986) Fundamentals of Protective Design for Conventional Weapons, TM 5-855-1. Washington, DC, Headquarters, U.S. Department of the Army.
  9. U.S. Department of the Army (1990) Structures to Resist the effects of Accidental Explosions, TM 5-1300, Navy NAVFAC p-397, AFR 88-2. Washington, DC, U.S. Department fo the Army, Navy and Air Force.
  10. UFC4-010-01 (2002) DoD Minimum Antiterrorism Standards for Buildings, U. S. Department of Defense.
  11. Youngseo Hwang, James C. Anderson (2009) Responses of a Low Rise Steel Building to Air Blast, SEAOC Convention Proceedings.