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SOME RESULTS OF SELF MAP NEAR-RINGS

YONG UK CHO

Abstract. In this paper, We initiate a study of zero symmetric and con-

stant parts of near-rings, and then apply these to self map near-rings. Next,
we investigate that every near-ring can be embedded into some self map

near-ring, and every zero symmetric near-ring can be embedded into some

zero symmetric self map near-ring.

AMS Mathematics Subject Classification : 16Y30.
Key word and phrases : zero symmetric part, constant part, subnear-ring,

self map near-rings and embedding.

1. Introduction

A near-ring R is an algebraic system (R,+, ·) with two binary operations,
say + and · such that (R,+) is a group (not necessarily abelian) with neutral
element 0, (R, ·) is a semigroup and a(b + c) = ab + ac for all a, b, c in R. We
note that obviously, a0 = 0 and a(−b) = −ab for all a, b in R, but in general,
0a 6= 0 and (−a)b 6= −ab.

We consider the following substructures of near-rings: Given a near-ring R,
R0 = {a ∈ R | 0a = 0} which is called the zero symmetric part of R,

Rc = {a ∈ R | 0a = a} = {a ∈ R | ra = a, for all r ∈ R} = {0a | a ∈ R}

which is called the constant part of R.
A non-empty subset S of a near-ring R is said to be a subnear-ring of R, if S

is a near-ring under the operations of R, equivalently, for all a, b in S, a− b ∈ S
and ab ∈ S. Sometimes, we denote it by S < R.

We note that R0 and Rc are subnear-rings of R, but Rd is not a subnear-ring
of R. A near-ring R with the extra axiom 0a = 0 for all a ∈ R, that is, R = R0 is
said to be zero symmetric, also, in case R = Rc, R is called a constant near-ring.

Let (G,+) be a group (not necessarily abelian). We may obtain some exam-
ples of near-rings as following:
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First, if we define multiplication on G as xy = y for all x, y in G, then (G,+, ·)
is a near-ring, because (xy)z = z = x(yz) and x(y+ z) = y+ z = xy+xz, for all
x, y, z in G, but in general, 0x = 0 and (x+ y)z = xz + yz are not true. These
kinds of near-rings are constant near-rings.

Next, in the set

M(G) = {f | f : G −→ G}
of all the self maps of G, if we define the sum f + g of any two mappings f, g
in M(G) by the rule x(f + g) = xf + xg for all x ∈ G and the product f ◦ g
by the rule x(f ◦ g) = (xf)g for all x ∈ G, then (M(G),+, ◦) becomes a near-
ring. It is called the self map near-ring on the group G. Also, we can define the
substructures of (M(G),+, ◦) as following: M0(G) = {f ∈M(G) | 0f = 0} and
Mc(G) = {f ∈M(G) | f is constant}.

For the remainder basic concepts and results on near-rings, we refer to [3].

2. Properties of self map near-rings

Let R and S be two near-rings. Then a mapping θ from R to S is called a
near-ring homomorphism if (i) (a+ b)θ = aθ + bθ, (ii) (ab)θ = aθbθ. Obviously,
Rθ < S and Tθ−1 < R for any T < S.

Let R be any near-ring and G an additive group. Then G is called an R-group
if there exists a near-ring homomorphism

θ : (R,+, ·) −→ (M(G),+, ·).

Such a homomorphism θ is called a representation of R on G, we may write that
xr (right scalar multiplication in R) for x(rθ) for all x ∈ G and r ∈ R. If R
is unitary, then R-group G is called unitary. Thus an R-group is an additive
group G satisfying (i) x(a+ b) = xa+ xb, (ii) x(ab) = (xa)b and (iii) x1 = x ( if
R has a unity 1 ), for all x ∈ G and a, b ∈ R.

Evidently, every near-ringR can be given the structure of anR-group (unitary,
if R is unitary) by right multiplication in R. Moreover, every group G has
a natural M(G)-group structure, from the representation of M(G) on G by
applying the f ∈M(G) to the x ∈ G as a scalar multiplication xf .

Theorem 2.1. Let (G, +) be a group and let Φ a subset of endomorphisms of
(G, +) containing zero endomorphism ζ. Then the set

MΦ(G) = {f ∈M(G)|f ◦ φ = φ ◦ f, ∀φ ∈ Φ}

is a unitary zero symmetric subnear-ring of M(G).

Proof. Let f, g ∈ MΦ(G). Then f ◦ φ = φ ◦ f and g ◦ φ = φ ◦ g for any φ ∈ Φ,
and so we have, since φ is an endomorphism,

x[(f − g) ◦ φ] = (x(f − g))φ = (xf − xg)φ

= (xf)φ− (xg)φ = x(f ◦ φ)− x(g ◦ φ) = x(φ ◦ f)− x(φ ◦ g)

= (xφ)f − (xφ)g = (xφ)(f − g) = x[φ ◦ (f − g)],
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for all x ∈ G. Hence (f − g) ◦ φ = φ ◦ (f − g), and so f − g ∈ MΦ(G). This
implies that (MΦ(G), +) is a subgroup of (M(G), +).

Next, for any f, g ∈MΦ(G), we have that

(f ◦ g) ◦ φ = f ◦ (g ◦ φ) = f ◦ (φ ◦ g) = (φ ◦ f) ◦ g = φ ◦ (f ◦ g),

for any φ ∈ Φ. Hence f ◦ g ∈ MΦ(G). Consequently, (MΦ(G), +, ◦) is a
subnear-ring of (M(G), +, ◦).

Finally, let f ∈MΦ(G). Since ζ ∈ Φ, we see that ζ ◦ f = f ◦ ζ = ζ. Therefore
MΦ(G) is zero symmetric with identity 1G. �

Corollary 2.2. For any group (G, +), (M0(G),+, ◦) is a zero symmetric
subnear-ring of (M(G),+, ◦). Moreover, M0(G) = M(G)0, where M(G)0 is
a zero symmetric part of M(G).

Proof. The first paragraph is immediately from the Theorem 2.1.
Next, clearly, M0(G) ⊆ M(G)0, because every element of M0(G) is zero

symmetric by Theorem 2.1.
Conversely, let f ∈M(G)0. Then ζ◦f = ζ, that is, for any x ∈ G, (xζ)f = xζ.

This implies that 0f = 0. Hence, f ∈M0(G). �

Remark 2.3. Let G be an additive group. Then we see that Mc(G) = M(G)c,
where M(G)c is the constant part of M(G).

Indeed, if f ∈Mc(G), then f is constant, say, f = c. From this,

x(ζ ◦ f) = (xζ)f = 0f = c = xf,

for all x ∈ G. Hence ζ ◦ f = ζ, and so f ∈M(G)c.
Conversely, if f ∈ M(G)c, then ζ ◦ f = f , that is, 0f = (xζ)f = xf , for all

x ∈ G. Hence f is constant, so that f ∈Mc(G).
Note that from Corollary 2.2 and Remark 2.3, M0(G) is a zero symmetric

near-ring and MC(G) is a constant nea-ring.

Lemma 2.4. Let f : R −→ S be a near-ring homomorphism. Then the following
conditions are true.

(1) R0f ⊆ S0.
(2) Rcf ⊆ Sc.

Proof. (1) Let y ∈ R0f which is in S. Then there exists a ∈ R0 such that
y = af , where 0a = 0. Thus

0y = 0(af) = 0faf = (0a)f = 0f = 0.

Hence y ∈ S0.
(2) Let y ∈ Rcf which is in S. Then there exists a ∈ Rc such that y = af ,

where 0a = a. Thus

0y = 0(af) = 0faf = (0a)f = af = y.

Hence y ∈ Sc. �



526 Yong Uk Cho

Let f : R −→ S be a near-ring monomorphism. We know that Rf is a
subnear-ring of S, and so f : R −→ Rf is a near-ring isomorphism. Thus S has
an isomorphic copy of R as a subnear-ring. We say that R is embedded into S,
and f is an embedding.

Theorem 2.5. Let (R,+, ·) be a near-ring and (G, +) a group containing (R,+)
as a proper subgroup. Then (M(G), +, ◦) is a unitary near-ring and has a
subnear-ring isomorphic to (R,+, ·). That is, every near-ring can be embedded
into a near-ring with identity.

Proof. For any a ∈ R, we may define a map fa ∈M(G) by

xfa = a, if x /∈ R, and = xa, if x ∈ R.

Thus we may obtained the map Ψ : R −→M(G) which is defined by aΨ = fa.
We will proceed to show that Ψ is a near-ring monomorphism. For any a, b ∈ R,
since (a+ b)Ψ = f(a+b) we have that

xf(a+b) = a+ b, if x /∈ R, and = x(a+ b) = xa+ xb, if x ∈ R.

Also, we have that

x(fa + fb) = xfa + xfb = a+ b, if x /∈ R, and = xa+ xb, if x ∈ R.

Thus

(a+ b)Ψ = f(a+b) = fa + fb = aΨ + bΨ.

On the other hand, from (ab)Ψ = f(ab) we have that

xf(ab) = ab, if x /∈ R, and = x(ab) = (xa)b, if x ∈ R.

Also, we have that

x(fa ◦ fb) = (xfa)fb = ab, if x /∈ R, and = (xa)fb = (xa)b, if x ∈ R.

Thus

(ab)Ψ = f(ab) = fa ◦ fb = aΨ ◦ bΨ.
Hence Ψ is a near-ring homomorphism from R into M(G).

Next, it remains to show that Ψ is injective. Let a, b ∈ R with a 6= b. We want
to show that aΨ = fa 6= fb = bΨ. For x /∈ R, we know that xfa = a 6= b = xfb.
Consequently, we obtain what we wanted. �

We have the following statement because of the Lemma2.4 and Theorem 2.5.

Corollary 2.6. For any group (G, +), R0Ψ ⊆ M0(G) and RcΨ ⊆ Mc(G) =
M(G)c.

Corollary 2.7. If R is any zero symmetric near-ring, then R can be embedded
into some zero symmetric near-ring with identity.
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