DOI QR코드

DOI QR Code

MAXIMUM CURVES OF TRANSCENDENTAL ENTIRE FUNCTIONS OF THE FORM $E^{p(z)}$

  • Received : 2010.08.06
  • Accepted : 2010.11.25
  • Published : 2011.01.30

Abstract

The function f(z) = $e^{p(z)}$ where p(z) is a polynomial of degree n has 2n Julia lines. Julia lines of $e^{p(z)}$ divide the complex plane into 2n equal sectors with the same vertex at the origin. In each sector, $e^{p(z)}$ has radial limits of 0 or innity. Main results of the paper are concerned with maximum curves of $e^{p(z)}$. We deal with some properties of maximum curves of $e^{p(z)}$ and we give some examples of the maximum curves of functions of the form $e^{p(z)}$.

Keywords

References

  1. J. M. Anderson, K. F. Barth and D. A. Brannan,Research problems in complex analysis, Bull. London math. Soc. 9 (1977), 129-162. https://doi.org/10.1112/blms/9.2.129
  2. C. T. Chuang, Normal Families of Meromorphic Functions, World Scientific, Singapore, 1993.
  3. D. Gaier, Lectures on Complex approximation, Birkhauser, Boston, 1987.
  4. G. Julia, Lecons sur les fonctions uniformes a Point singulier essentiel Isole, Imprimerie Gauthier-Villar, Paris, 1924.
  5. J. -H. Kim, K. H. Kwon and S. B. Park, On the normality of translated families of transcendental entire functions, J. of Appl. Math and Comp. 17(2005), 573-583.
  6. A. I. Markushevich (trans. and ed. by R. A. Silverman), Theory and Functions of a Complex Variable, Chelsea Publ. Co., New York, 1977.
  7. T. F. Tyler, Maximum curves and isolated points of entire functions, Proc. of the Amer. Math. Soc. 128(2000)9, 2561-2568. https://doi.org/10.1090/S0002-9939-00-05315-6