References
- J.L. Lions and G.Stampacchia, Variational inequalities Comm. Pure Appl. Math. 20(3), 493-517 (1967). https://doi.org/10.1002/cpa.3160200302
- H. Iiduka, W. Takahashi, Strong convergence studied by a hybrid type method for monotone operators in a Banach space, Nonlinear Analysis 68(12), 3679-3688 (2008). https://doi.org/10.1016/j.na.2007.04.010
- H. Iiduka, W. Takahashi, Weak convergence of a projection algorithm for variational inequalities in a Banach space, J. Math. Anal. Appl. 339(1), 668-679 (2008). https://doi.org/10.1016/j.jmaa.2007.07.019
- H. Iiduka, W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Analysis 61(4), 341-350 (2005).
- S.Y. Matsushita, W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, Journal of Approximation Theory 134(2), 257-266 (2005). https://doi.org/10.1016/j.jat.2005.02.007
- K. Ball, E.A. Carlen and E.H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms. Invent. Math, 115(1), 463-482 (1994). https://doi.org/10.1007/BF01231769
- Y.I. Alber, S. Reich, An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. Math. J. 4(2), 39-54 (1994).
- R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149(1), 75-88 (1970). https://doi.org/10.1090/S0002-9947-1970-0282272-5
- Ying Liu, Strong convergence theorem for relatively nonexpansive mapping and inverse-strongly-monotone mapping in a Banach space, Appl. Math. Mech. -Engl. Ed. 30(7)(2009), 925-932. https://doi.org/10.1007/s10483-009-0711-y
- D. Butnariu, S. Reich, A.J. Zaslavski, Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal. 7(2001)151-174.
- Y. Censor, S. Reich, Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization 37 (1996) 323-339. https://doi.org/10.1080/02331939608844225
- S.Y. Matsushita, W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory 134 (2005) 257-266. https://doi.org/10.1016/j.jat.2005.02.007
- Y. Su, D. Wang, M. Shang, Strong convergence of monotone hybrid algorithm for hemi-relatively nonexpansive mappings, Fixed Point Theory Appl. (2008) doi:10.1155/2008/284613.
- L. Wei, Y. Cho, H. Zhou, A strong convergence theorem for common fixed points of two relatively nonexpansive mappings, J. Appl. Math. Comput. (2008) doi:10.1007/s12190-008-0092-x.
- H. Zegeye, N. Shahzad, Strong convergence for monotone mappings and relatively weak nonexpansive mappings, Nonlinear Anal. (2008).
- Yongfu. Su, Junyu Gao, Haiyun Zhou, Monotone CQ algorithm of fixed points for weak relatively nonexpansive mappings and applications, Journal of Mathematical Research and Exposition, 28:4 (2008), 957-967.
- Habtu. Zegeye, Naseer Shahzad, Strong convergence theorems for monotone mappings and relatively weak nonexpansive mappings, Nonlinear Analysis, 70:7 (2009), 2707-2716. https://doi.org/10.1016/j.na.2008.03.058
- Y. Su, D. Wang and M. Shang, Strong Convergence of Monotone Hybrid Algorithm for Hemi-Relatively Nonexpansive Mappings, Fixed Point Theory and Applications Volume 2008, Article ID 284613, 8 pages doi:10.1155/2008/284613
- Yongfu. Su, Ziming Wang, Hongkun Xu, Strong convergence theorems for a common fixed point of two hemi-relatively nonexpansive mappings, Nonlinear Analysis, 71 (2009) 5616-5628. https://doi.org/10.1016/j.na.2009.04.053
- M.Y. Carlos, H.K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal. 64 (2006), 2240-2411.
- S.Y. Matsushita, W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, Journal of Approximation Theory, 134 (2005), 257-266. https://doi.org/10.1016/j.jat.2005.02.007
- Ya.I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, in: A.G. Kartsatos (Ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, 1996, pp. 15-50.
- I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, 1990.
- W. Takahashi, Nonlinear Functional Analysis, Yokohama-Publishers, 2000.