Abstract
In an online-game, the various game service victimized cases are generated by the bots program or auto program. Particularly, the abnormal collection of the game money and item loses the inherent fun of a game. It reaches ultimately the definite bad effect to the game life cycle. This paper collects and analyzes the pattern of game behavior change for the bots detection method. By using the game activity changing information of the human and game activity changing information of the bots, the degree of resemblance was measured. It utilized in the bots detection method. In an experiment, by using the served online-game, the model of a user and bots were generated and similarity was distinguished. And the reasonable result was confirmed.
온라인 게임에서 오토 프로그램 또는 봇 프로그램으로 인하여 다양한 게임 서비스 피해사례가 발생하고 있다. 특히, 게임 머니 및 아이템의 비정상적인 수집은 게임이 가지는 본연의 재미를 잃어버리게 되고, 궁극적으로 게임 생명주기에 결정적 악영향을 미치게 된다. 본 논문은 게임 봇 감지를 위해 게임 행위 변화 패턴을 수집하고 분석하여 봇 탐지 방법에 적용한다. 인간의 게임 행위 변화 정보와 봇의 게임 행위 변화 정보를 이용하여 유사정도를 측정하고, 봇 탐지 기법에 활용하는 것이다. 실험에서는 서비스 중인 온라인 게임을 이용하여 사용자와 봇의 모델을 생성하고 유사성을 판별하였으며 적절한 결과를 확인하였다.