DOI QR코드

DOI QR Code

Analysis of Correlation Between Velocity of Elastic Wave and Mechanical Properties of Rocks

암석의 탄성파속도 거동특성과 역학 parameter와의 상관성 해석

  • 이종석 (울산대학교 공과대학 건설환경공학부) ;
  • 문종규 (동명기술공단(주)) ;
  • 최웅의 (현대중공업 설계부)
  • Received : 2011.01.07
  • Accepted : 2011.02.23
  • Published : 2011.02.28

Abstract

Analysis of correlation and behavior characteristics at elastic wave velocity have studied on Korean rock data after checking population size and Chi-square method. Behavior characteristics are quite different from each rock and mechanical parameters at elastic wave velocity. This study shows it is necessary to analize correlation to rock behavior characteristics for correct answer from natural rock.

이 연구에서는 퇴적암, 화성암, 변성암군의 10개 암종-1,417개의 시험자료를 이용하여 탄성파속도와 각종 역학적 parameter간의 상관성해석을 시행하였다. 해석 과정에서 나타나는 암종과 역학 parameter간의 거동특성이 상의함을 구명하였으며, 거동이 동일한 암종들을 모집단으로 상관성 해석을 하였다. 각종 시험자료는 표본의 규모 검정과 Chi-Square검정을 거친 후 해석에 임하였다. 도출된 추정식들은 95% 신뢰도가 확보됨을 확인할 수 있었다.

Keywords

References

  1. 한국의 지질도(2001), 한국지질자원연구소.
  2. 김우철, 김재주, 박병욱, 박성현, 송문섭, 이상열, 이영조, 전종우, 조신섭(2005), 현대통계학(제4 개정판), 서울대학교 자연과학대학, 영지문화사.
  3. 김정년(1985), 통계학(증보판), 경문사.
  4. ASTM (D 2845-95), Laboratory Determination of Pulse Velocities and Ultrasonic Elastic Constant of Rock.
  5. Ben Zeitun A.E.(1986), Use of pulse velocity to predict compressive strength of concrete, Int. J. Cement Composityes Light Weight Concrete, Vol. 8, pp. 51-65. https://doi.org/10.1016/0262-5075(86)90024-2
  6. Brace M.A., Walsh J.B. & Frangos W.T.(1968), Permeability of granite under high pressure, J. Geophys. Res., Vol. 73, pp. 2225-2236. https://doi.org/10.1029/JB073i006p02225
  7. Budetta P., De Riso R. & De Luca C.(2001), Correlations between jointing and seismic velocities in highly fractured rock masses, Bull. Eng. Geol. Env., Vol. 60, pp. 185-192. https://doi.org/10.1007/s100640100097
  8. D'Andrea D.V., Fischer R.L. & Fogelson D.E.(1965), Prediction of compressive strength from other rock properties, U.S. Bureau of Mines Report of investigation 6702.
  9. Deere D.U. & Miller R.P.(1966), Engineering classification and index properties for intact rock, Air Force Weapons Lab. Tech. Report, AFWL-TR 65-116, Kirtland Base, New Mexico.
  10. Entwisle D.C., Hobbs P.R.N., Jones L.D., Gunn D. & Raines M.G.(2005), The relationship between effective porosity, uniaxial compressive strength and sonic velocity of intact Borrowdale Volcanic Group core samples from Sellafield, Geotech. & Geolo. Eng., Vol. 23, pp. 793-809. https://doi.org/10.1007/s10706-004-2143-x
  11. Gaviglio P.(1989), Longitudinal wave propagation in a limestone: the relationship between velocity and density, Rock Mech. Rock Eng., Vol. 22, pp. 299-306. https://doi.org/10.1007/BF01262285
  12. Gill D.E., Corthesy R. & M.H. Leite(2005), Determining the minimal number of specimens for laboratory testing of rock properties, Eng. Geol., Vol. 78, pp. 29-51. https://doi.org/10.1016/j.enggeo.2004.10.005
  13. Gueguen Y. & Schubnel A.(2003), Elastic wave velocities and permeability of cracked rocks, Tectonophysics, Vol. 370, pp. 1663-176.
  14. Hornby B.E.(1998), Experimental laboratory determination of the dynamic elastic properties of wet, drained shales, J. Geophys. Res., Vol. 103, pp. 22945-22964.
  15. Hudson T.A., Jones E.T.W. & New B.M.(1980), P-wave velocity measurements in a machine bored chalk tunnels, Q. J. Eng. Geol., Vol. 13, pp. 33-43. https://doi.org/10.1144/GSL.QJEG.1980.013.01.02
  16. Inoue M. & Ohomi M.(1981), Relation between uniaxial compressive strength and elastic wave velocity of soft rock, Proc. Int. Symp. Weak Rock, Tokyo, pp. 9-13.
  17. Insun Song, Mancheol Suh, Yong-Kyun Woo & Tianyao Hao(2004), Determination of the elastic modulus set of foliated rocks from ultrasonic velocity measurements, Eng. Geol., Vol. 72, pp. 293-308. https://doi.org/10.1016/j.enggeo.2003.10.003
  18. ISRM (1978), Suggested Methods for Determining Sound Velocity, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 15, pp. 53-58.
  19. Jones L.E. & Wang H.F.(1981), Ultrasonic velocities in Cretaceous shale from the Willistone base, Geophysics, Vol. 46, pp. 288-297. https://doi.org/10.1190/1.1441199
  20. Kahraman S.(2002), The effects of fracture roughness on P-wave, Eng. Geol., Vol. 663, pp. 347-350.
  21. Kahraman S. & Alber M.(2006), Predicting the physicomechanical properties of rocks from electrical impedance spectroscopy measurements, Int. J. Rock Mech. & Min. Sci., Vol. 43, pp. 543-553. https://doi.org/10.1016/j.ijrmms.2005.09.013
  22. Klimentos T.(1991), The effect of porosity-permeabilityclay content on the velocity of compressional waves, Geophysics, Vol. 56, pp. 1930-1939. https://doi.org/10.1190/1.1443004
  23. Kumar A., Jayakumar T., Raj B. & Ray K.K.(2003), Correlation between ultrasonoic shear wave velocity and Poisson's ratio for isotropic solid materials, Acta Materialia, Vol. 51, pp. 2417-2426. https://doi.org/10.1016/S1359-6454(03)00054-5
  24. Le Ravalec M., Gueguen Y. & Chelidze T.(1996), Elastic wave velocites in partially saturated rocks, J. Geophys. Res., Vol. 101, pp. 837-844. https://doi.org/10.1029/95JB02879
  25. O'Connell R. & Budiansky B.(1974), Seismic velocities in dry and saturated rocks, J. Geophys. Res., Vol. 79, pp. 5412-5426.
  26. Ren N.K. & Hudson P.J.(1985), Predicting the in-situ state of stress using Differential Wave Velocity Analysis, Proc. 28th. U.S. Symp. Rock Mech., pp. 1235-1244.
  27. Sassa K., Ryu M. & Sugimoto T.(1984), P-wave velocity in rock mass with water-saturated cracks, Proc. 6th. Japan Symp. Rock Mech., Kyoto, Japan, pp. 1663-1668.
  28. Sayers C.M.(1995), Stress dependent elastic wave velocities in shales, Int. J. Rock Mech. Sci. & Geomech. Abstr., Vol. 32, pp. 263-267. https://doi.org/10.1016/0148-9062(94)00049-9
  29. Sekiguchi A., Brongersma S.H., & Maex K.(2006), Influence of mass density and mechanical properties on the surface acoustic wave velocity dispersion, Micro Elec. Eng., Vol. 83, pp. 2368-2372. https://doi.org/10.1016/j.mee.2006.10.038
  30. Yamaguchi U.(1970), The number of test-pieces required to determine the strength of rock, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. Vol.7, pp. 209-227. https://doi.org/10.1016/0148-9062(70)90013-6