DOI QR코드

DOI QR Code

다양한 광원으로 중합한 치과용 접착제의 전단강도에 관한 비교 연구

THE COMPARATIVE STUDY FOR THE SHEAR BOND STRENGTH OF DENTAL ADHESIVES CURED WITH VARIOUS LIGHT SOURCES

  • 최남기 (전남대학교 치의학전문대학원 소아치과학교실) ;
  • 조성훈 (전남대학교 치의학전문대학원 소아치과학교실) ;
  • 김선미 (전남대학교 치의학전문대학원 소아치과학교실)
  • Choi, Nam-Ki (Department of Pediatric Dentistry, School of Dentistry, Chonnam National University and Dental Research Institute) ;
  • Cho, Seong-Hoon (Department of Pediatric Dentistry, School of Dentistry, Chonnam National University and Dental Research Institute) ;
  • Kim, Seon-Mi (Department of Pediatric Dentistry, School of Dentistry, Chonnam National University and Dental Research Institute)
  • 투고 : 2010.11.20
  • 심사 : 2011.02.17
  • 발행 : 2011.02.28

초록

본 연구의 목적은 상업용으로 시판되고 있는 수종의 치과용 접착제를 세대별로 분류하여 서로 다른 광원에 노출 시켜 중합하고 접착면의 전단 강도 측정을 통해 결합강도를 비교함으로써 간접적으로 광원에 따른 접착제의 중합 양상을 알아보고 소아치과 영역에서 가장 권장할만한 치과용 접착제와 광원 종류의 조합을 알아보고자 함이다. 본 연구에서는 최근에 개발된 치과용접착제를 대상으로 다른 유형의 광원으로 중합하였을 때 영구치 상아질에 대한 결합력 비교 평가하여 임상에서 상아질결합제와 광중합 시스템의 적절한 조합을 선택하는데 도움을 주고자 시행하였으며, 실험재료로 Adper Scotchbond Multi-purpose Plus Adhesive (SM; 3M ESPE, USA), Adper Single bond 2 (SB; 3M ESPE, USA), Clearfil SE Bond (SE; Kuraray Medical Inc., Japan), Adper Prompt L-Pop (PL; 3M ESPE, USA), GBond (GB; GC Cooperation Toyko, Japan)을 이용하여 Elipar Free light 2(LED; 3M ESPE, USA), OptiLux 501 (Halogen, Kerr, USA), Flipo (PAC, LOKKI, FRA) 세 가지의 광원으로 중합하고 전단결합강도를 평가한 뒤 다음과 같은 결과를 얻었다. 1. Freelight 2로 중합하였을 때 전단결합강도는 SM이 가장 높았으며($28.22{\pm}5.56$), SB($21.68{\pm}7.44$), SE($20.13{\pm}9.88$), PL($14.18{\pm}5.88$), GB($14.30{\pm}6.81$) 순이었다. SM은 PL, GB와 유의한 차이가 있었으나 (p<0.05), SB, SE, PL, GB 간에는 차이가 없었다. 2. Optiux 501로 중합하였을 때 전단결합강도는 SM이 가장 높았으며 ($22.06{\pm}7.95$), PL($12.94{\pm}4.96$), SB($12.80{\pm}3.35$), SE($12.43{\pm}4.79$), GB($10.00{\pm}3.47$) 순이었고, SM만 유의한 차이가 있었으나 (p<0.05), 다른 군 간에는 차이가 없었다. 3. Flipo로 중합하였을 때 전단결합강도는 SM이 가장 높았으며 ($26.82{\pm}11.16$), PL($15.42{\pm}9.35$), SB($10.96{\pm}3.74$), SE($9.39{\pm}3.74$), GB($7.85{\pm}2.22$) 순이었다. SM은 SB, SE, GB 군과 유의한 차이가 있었으나 (p<0.05), 다른 군 간에는 차이가 없었다. 4. 광원에 따른 차이는 SB와 GB에서만 유의성이 있었고, 다른 결합제에서는 유의한 차이가 없었다. 광원에 따른 유의성을 나타낸 결합제 중 SB는 Freelight 2가 다른 광원에 비해 유의한 차이를 보였고 OptiLux 501과 Flipo간의 차이가 없었던 반면, GB는 Freelight 2와 Flipo 간에만 유의한 차이를 나타냈다.

The objective of this study was to compare the shear bond strengths of five dentin adhesive systems cured with three different light curing sources. Seventy five noncarious permanent teeth were collected and stored in an 0.1% thymol solution at room temperature after extraction. The tested adhesives were: Adper Scotchbond Multi-purpose Plus Adhesive (SM) Adper Single bond 2 (SB), Clearfil SE Bond (SE), Adper Prompt L-Pop (PL), G-Bond (GB). And three light curing unit systems were used: Elipar Free light 2(LED), OptiLux 501 (Halogen), Flipo (PAC). For the shear bonding test, the labial and lingual surfaces of permanent teeth were used. To obtain a flat dentin surface, the labial and lingual surfaces of the teeth were sanded on SiO2 with number 600 grit and then divided into 15 groups of 10 surfaces each. All samples were theromocycled in water $5^{\circ}C$ and $55^{\circ}C$ for 1000 cycles. The results were as follows: 1. When cured with Freelight 2, the shear bond strength of SM was significantly higher than that of PL, GB (p<0.05), whereas no significant difference was found among those of any other bonding agents. 2. When cured with Optilux 501, the shear bond strength of SM was significantly higher than those of any other bonding agents (p<0.05), whereas no singnificant difference was found among those of andy other bonding agents. 3. When cured with Flipo, the shear bond strength of SM was significantly higher than those of SB, SE, GB (p<0.05), whereas no significant differences was found among those of any other bonding agents. 4. For comparison according to three different light cure unit system, except SB and GB, each three dentin bonding agents showed no significant difference. For SB, only Freelight 2 was significantly higher than the others, with no significant difference between Optilux 501 and Flip. For GB, Statistically significant difference was found only between Freelight and Flipo.

키워드

참고문헌

  1. Pires JF, Cvitko E, Denehy GE, et al. : Effects of curing tip distance on light intensity and composite resin microhardness. Quintessence Int, 24: 517-521, 1993.
  2. 오유향, 박윤경, 이난영 등 : 광중합 광원의 종류와 조사시간에 따른 치면열구전색제의 미반응 모노머 용출. 대한소아치과학회지 31:421-430, 2004.
  3. Roberson TM, Heymann H, Swift EJ : Operative dentistry 4th ed. Mosby, Inc. St. Louis, 177-211, 2002.
  4. 대한치과보존학회 : 치과보존학. 신흥인터내셔날, 서울, 231-266, 2001.
  5. Althoff O, Hartung M : Advances in light curing. Am J Dent, 13:77-81, 2000.
  6. 최남기, 양규호, 김선미 등 : 다양한 광원에 의한 광중합형 수복물질의 미세경도에 관한 연구. 대한소아치과학회지 32:634-643, 2005.
  7. 권민석, 정태성, 김신 : 광원의 유형에 따른 광중합 수복재의 중합양상. 대한소아치과학회지 30:229-236, 2003.
  8. 박창후, 최남기, 양규호 등 : 광중합기 종류에 따른 복합레진과 콤포머의 미세누출에 관한 연구. 대한소아치과학회지 33:438-445, 2006.
  9. 문현정, 임범순, 이용근 등 : 콤포짓트 레진의 중합체계에 따른 중합률 및 잔류 단량체의 유출. 대한치과기자재학회지 28:169-178, 2001.
  10. Hannig M, Bott B : In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater 15:275-281, 1999. https://doi.org/10.1016/S0109-5641(99)00047-0
  11. Uhl A, Mills RW, Jandt KD : Polymerization and light-induced heat of dental composites cured with LED and halogen technology. Biomater 24:1809-1820, 2003. https://doi.org/10.1016/S0142-9612(02)00585-9
  12. Tarle Z, Meniga A, Knezevic A, et al. : Composite conversion and temperature rise using a conventional, plasma arc, and an experimental blue LED curing unit. J Oral Rehabil 29:662-667, 2002. https://doi.org/10.1046/j.1365-2842.2002.00866.x
  13. Barghi N, Berry T, Hatton C : Evaluating intensity output of curing lights in private dental offices. J Am Dent Assoc 125:992-996, 1994. https://doi.org/10.14219/jada.archive.1994.0204
  14. Oberholzer TG, Preez ICD, Kidd M : Effect of LED curing on the microleakage, shear bond strength and surface hardness of a resin-based composite restoration. Biomater 26:3981-3986, 2005. https://doi.org/10.1016/j.biomaterials.2004.10.003
  15. Attar N, Korkmaz Y : Effect of two light-emitting diode(LED) and one halogen curing light on the microleakage of Class V flowable composite restorations. J Contemp Dent Pract 8(2):080-088, 2007.
  16. Uhl A, Michaelis C, Mills RW, et al. : The influence of storage and indenter load on the Knoop hardness of dental composites polymerized with LED and halogen technologies. 20:21-28, 2004. https://doi.org/10.1016/S0109-5641(03)00054-X
  17. Dunn WJ, Bush AC : A comparison of polymerization by light-emitting diode and halogen-based lightcuring units. J Am Dent Assoc. 133:335-341, 2002. https://doi.org/10.14219/jada.archive.2002.0173
  18. Mills RW, Uhl A, Blackwell GB, et al. : High power light emitting diode (LED) arrays versus halogen light polymerization of oral biomaterials: Barcol hardness, compressive strength and radiometric properties. Biomater 23:2955-2963, 2002. https://doi.org/10.1016/S0142-9612(02)00024-8
  19. Stahl F, Ashworth SH, Jandt KD, et al. : Lightemitting diode (LED) polymerisation of dental composites: flexural properties and polymerisation potential. Biomater 21:1379-1385, 2000. https://doi.org/10.1016/S0142-9612(00)00029-6
  20. Swanson T, Dunn WJ, Childers DE, et al. Shear bond strength of orthodontic brackets bonded with light-emitting diode curing units at various polymerization times. Am J Orthod Dentofacial Orthop 125:337-41, 2004. https://doi.org/10.1016/j.ajodo.2003.04.011
  21. Nomoto R, Asada M, McCabe JF, et al. : Light exposure required for optimum conversion of light activated resin systems. Dent mater 22:1135-1142, 2006. https://doi.org/10.1016/j.dental.2005.10.011
  22. Sfondrini MF, Cacciafest V, Scribante A, et al : Effect of light-tip distance on the shear bond strengths of resin-modified glass ionomer cured with high-intensity halogen, light-emitting diode and plasma arc lights. Am J Orthod Dentofacial Orthop 129:541-546, 2006. https://doi.org/10.1016/j.ajodo.2005.12.025
  23. Cacciafesta V, Sfondrini MF, Scribante A, et al. : Effect of light-tip distance on the shear bond strengths of composite resin. Angle Orthod 75:386-391, 2005.
  24. 김민수, 김종수, 유승훈 : 수종의 광중합기를 이용한 교정용 광중합형 글라스 아이오노머 시멘트의 전단 결합 강도에 관한 연구. 대한소아치과학회지 34:81-89, 2007.
  25. Pettemerides AP, Ireland AJ, Sherriff M : An Ex Vivo Investigation into the use of a plasma arc lamp when using a visible light-cured composite and a resin-modified glass poly(alkenoate) cement in orthodontic bonding. J Orthod 28:237-244, 2001. https://doi.org/10.1093/ortho/28.3.237
  26. Oesterle LJ, Newman SM, Shellhart WC : Rapid curing of bonding composite with a xenon plasma arc light. Am J Orthod Dentofacial Orthop 119:610-616, 2001. https://doi.org/10.1067/mod.2001.113652
  27. Thind BS, Stirrups DR, Lloyd CH : A comparison of tungsten-quartz-halogen, plasma arc and light-emitting diode light sources for the polymerization of an orthodontic adhesive. Europ J Orthod 28:78-82, 2006.
  28. Signorelli MD, Kao E, Ngan PW, et al. : Comparison of bond strength between orthodontic brackets bonded with halogen and plasa arc. Am J Orthod Dentofacial Orthop 129(2):277-82, 2006 Feb. https://doi.org/10.1016/j.ajodo.2004.07.043
  29. Sfondrini MF, Cacciafesta V, Pistorio A, et al. : Effects of conventional and high-intensity light curing on enamel shear bond strength of composite resin and resin-modified glass-ionomer. Am J Orthod Dentofacial Orthop 119:30-35, 2001. https://doi.org/10.1067/mod.2001.111399
  30. Manzo B, Liistro G, De Clerck H et al. : Clinical trial comparing plasma arc and conventional halogen curing lights for orthodontic bonding. Am J Orthod Dentofacial Orthop 125:30-35, 2004. https://doi.org/10.1016/j.ajodo.2003.03.003
  31. Yoon TH, Lee BS, Lim BS, et al. : Degree of polymerization of resin composites by different light sources. J Oral Rehabil 29:1165-1173, 2002. https://doi.org/10.1046/j.1365-2842.2002.00970.x
  32. Buonocore M : A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res, 34:849-853, 1955. https://doi.org/10.1177/00220345550340060801
  33. Davison CL, de Gee AJ, Felizer A : The competition between the composite-dentin bond strength and polymerization constraction stress. J Dent Res 63:1396-1399, 1984. https://doi.org/10.1177/00220345840630121101
  34. Munksgaard EC, Irie M, Asmussen E : Dentin-polymer bond prompted by Gluma and various resins. J Dent Res 64:1409-1411, 1985. https://doi.org/10.1177/00220345850640121801
  35. Ateyah NZ, Elhejazi AA : Shear bond strengths and microleakage of four types of dentin adhesive materials. J Contemp Dent Pract 5:63-73, 2004.
  36. Bouillaguet S, Gysi P, Wataha JC, et al. : Bond strength of composite to dentin using conventional one-step and self-etching adhesive systems. J Dent 29:55-61, 2001. https://doi.org/10.1016/S0300-5712(00)00049-X
  37. Soderholm KJ, Guelmann M, bimstein E : Shear bond strength of one 4th and 7th generation bonding experiences. J Adhes Dent 7:57-64, 2005.
  38. Atash R, Abbeele AVD : Bond strengths of eight contemporary adhesives to enamel and to dentine in vitro study on bovine primary teeth. Int J Paediatr Dent, 15:264-273, 2005. https://doi.org/10.1111/j.1365-263X.2005.00650.x
  39. Hansen EK, Asumussen E. Reliability of three dental radiometers. Scand J Dent Res 101(2):115-119, 1993.
  40. 김선영, 이인복, 조병훈 등 : Light emitting diode로 광조사한 상아질 접착제의 상아질 전단접착강도와 중합률에 관한 연구. 대한치과보존학회지 29:504-514, 2004. https://doi.org/10.5395/JKACD.2004.29.6.504
  41. Miyazaki M, Hattori T, Ichiishi Y et al. : Evaluaiton of curing units used in private dental offices. Oper Dent 23:50-54, 1998.
  42. Leonard DL, Charlton DG, Hilton TJ : Effect of curing tip diameter on the accuracy of dental radiometers. Oper Dent 24:31-37, 1999.
  43. Cook WD : Spectral distribution of dental photopolymerization sources. J Dent Res 61:1436-1438, 1982. https://doi.org/10.1177/00220345820610121201
  44. McCabe JF, Carnick TE : Ountput from visible-light activation units and depth of cure of light-activated composites. J Dent Res 68:1534-1539, 1989. https://doi.org/10.1177/00220345890680111301
  45. Nomoto R : Effect of light wavelength on polymerization of light-cured resins. Dent Mater J 16:60-73, 1997. https://doi.org/10.4012/dmj.16.60
  46. Fujibayashi K, Ishimaru K, Takahashi N et al. : Newly developed curing unit using blue light-emitting diodes. Dent Jap 34:49-53, 1998.
  47. Mills RW, Jandt KD, Ashworth SH : Dental composite depth of cure with halogen and blue light emitting diode (LED) technology. Br Dent J 186:388-391, 1994.
  48. Mills RW, Uhl A, Jandt KD : Optical power outputs, spectral and dental composite depths of cure obtained with blue light emitting diode (LED) and halogen light curing units (LCUs). Br Dent J 193:459-463, 2002. https://doi.org/10.1038/sj.bdj.4801597
  49. Brackett WW, Haisch LD, Covey DA : Effect of plasma arc curing on the micro -leakage of Class V resin-based composite restorations. Am J Dent, 13:121-122, 2000.
  50. Rueggeberg FA, Ergle JW, Mettenburg DJ : Polymerization depths of con- temporary light-curing units using microhardness. J Esthet Dent. 2000;12(6):340-9. https://doi.org/10.1111/j.1708-8240.2000.tb00243.x
  51. Roberts WW, Haisch LD, Covey DA : Effect of plasma arc curing on the micro-leakage of Class V resinbased composite restorations. Am J Dent, 13:121-122, 2000.
  52. Hofmann N, Hugo, Schubert K : Comparison between a plasma arc light source and conventional halogen curing units regarding flexural strength, modulus, and hardness of photoactivated resin composites. Clin Oral Investig, 4:140-147, 2000. https://doi.org/10.1007/s007840000063
  53. Peutzfeldt A, Sahafi A, Asmussen E : Characterization of resin composites polymerized with plasma arc curing units. Dent mater 16:330-336, 2000. https://doi.org/10.1016/S0109-5641(00)00025-7