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Abstract 
 

This paper presents an improved XOR-based Data Hiding Scheme (XDHS) to hide a halftone 
image in more than two halftone stego images. The hamming weight and hamming distance is 
a very important parameter affecting the quality of a halftone image. For this reason, we 
proposed a method that involves minimizing the hamming weights and hamming distances 
between the stego image and cover image in 2×2-pixel grids. Moreover, our XDHS adopts a 
block-wise operation to improve the quality of a halftone image and stego images. 
Furthermore, our scheme improves security by using a block-wise operation with A-patterns 
and B-patterns. Our XDHS method achieves a high quality with good security compared to the 
prior arts. An experiment verified the superiority of our XDHS compared with previous 
methods. 
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1. Introduction 

A halftone image is composed of 0 and 255-bit pixels, and the series of pixel patterns creates 
the illusion of a multi-tone image when viewed from a distance by the human visual system 
(HVS). Such halftone images are required for some specific applications, e.g., scanned text, 
figures, signatures, books, newspapers, magazines, or digital printers, which cannot print 
continuous tones. Moreover, halftone images have been applied in everyday life, e.g., a 
scanned handwritten signature captured by a PDA is typically used to pay for various services. 
The increasing demand for halftone images has motivated researchers to study methods of 
embedding data and watermarks into them. Thus, various data hiding and watermarking 
techniques for halftone images have been proposed [1][2][3][4][5][6][7][8][9][10]. In 
reference [1], a secret image was embedded into k halftone images by a simple XOR operation 
in bit-planes. In [2][3], the authors adopted an error diffusion dithering technique to hide a 
secret image that would appear when the halftone images were overlaid. Some schemes have 
manipulated “flippable” pixels to embed a significant amount of data without causing 
noticeable vestiges [4][5][6][7]. The schemes in [8][9] used block patterns to represent the 
secret data. In [10], a pair-wise logical computation was used to design a reversible data hiding 
scheme that could achieve the lossless reconstruction of a halftone image. With the exception 
of the schemes in [2][3], none of the above-mentioned schemes provide the stacking-to-see 
property in decoding. The data hiding schemes in [2][3] could stack (OR-ed operation) the 
stego-images (modified halftone images) to reveal the secret visually by HVS directly. This 
distinguishing property (stacking-to-see) of decoding can be used to securely and cheaply 
share the secret information, i.e., an OR-based DH scheme (ODHS). While [2][3] presented 
easy decoding schemes, the reconstructed secret had low contrast. However, the schemes in 
[2][3] are unsuitable for hiding a natural halftone image (note: the term natural halftone image 
comes from [11] and refers to a photographed image that is converted to a binary image and 
can be observed similar to the original image by HVS). Therefore, we propose an improved 
XOR-based data hiding scheme (XDHS) to considerably enhance the visual quality of 
stego-images and the reconstructed image. Moreover, this scheme makes it possible to hide a 
natural halftone image. The rest of this paper is organized as follows. Section 2 describes the 
related works and the design concept. The XDHS algorithm is presented in Section 3. Section 
4 discusses the experimental work and security analysis, and finally Section 5 concludes the 
paper. 

2. Related Works and Proposed Design Concept 

2.1 Related Works 
An ODHS [2][3] can also be implemented by a well-known visual cryptography scheme 
(VCS). A (k, n)-threshold VCS encrypts a secret image into n shadow images (shadows) by 
expanding a secret pixel into m sub-pixels. Any k (k≤n) shadows can be stacked (OR operation) 
to visually decode the secret image by HVS, but k−1 or fewer shadows will not show any 
information. The first VCS encrypted a black/white secret image into noise-like shadows [14]. 
Noise-like shadows are viewed with suspicion by censors and are difficult to identify and 
manage when delivered by e-mail or fax. Therefore, extended VCSs (EVCSs) with 
meaningful cover images (often natural images) on shadows were given in [15][16] to address 
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the problems of suspicion and management. Recently, XOR-based EVCSs were proposed 
[17][18] to enhance the contrast of the reconstructed image. Obviously, the k stego-images 
ODHS (k-OHDS) and proposed k stego-images XDHS (k-XDHS) can be implemented by the 
OR-based (k, k)-EVCS and XOR-based (k, k)-EVCS, respectively. However, both EVCSs use 
expanded stego-images, which results in poor visual quality for the stego-images and 
reconstructed image. In addition, the XOR-based EVCS leaves cover image remnants on the 
reconstructed image. Such disadvantages make the XOR-based (k, k)-EVCS inappropriate for 
implementing our k-XDHS. In the proposed k-XDHS, there are (k+1) halftone images: k cover 
images (I1, I2, …, Ik) and one secret image (Ik+1). We want to embed a modified secret image, 

1kI
+

′ , into k modified stego-images 1 2( ,  , , )kI I I′ ′ ′ . Image 1kI
+

′  can be decoded by 

1+
′
kI = 1

′I ⊕ 2
′I ⊕…⊕ ′

kI . Our aim is to minimize the visual distortion between Ij and jI ′ ,  j∈[1, 
k+1]. Obviously, a k-XDHS can be reduced to a (k−r)-XDHS by making any r images 
invariant and only modifying the pixels in the other (k+1− r) images. A reasonable application 
scenario is the recovery of a distortion-less halftone secret image by keeping secret image Ik+1 
invariant and modifying the other k cover images (I1, I2, …, Ik). References 
[1][4][5][6][7][8][9][10] provide data hiding schemes for halftone or binary images. These 
articles do not describe the relationship between pixels and image quality. On the other hand, 
we decribe the relationship between a block-wise operation and the quality of an image. The 
XOR operation in XDHS is a reversing-like operation, which was proved in [11][12][13]. In 
this paper, we will show the encoding and decoding algorithms used to get good visual quality 
in (k+1) modified halftone images. 

2.2 Design Concept 
A halftone image could be reproduced in gray scale by arranging the black and white pixels in 
a grid. HVS could average the region around a pixel instead of decoding every pixel 
individually, making it possible to create the illusion of many gray levels in a halftone image. 
Therefore, it is possible to make the black pixels in a grid simulate the shades of gray in an 
image. Thus, it is natural that the more black pixels there are in a grid, the darker the grid will 
appear to be. Fig. 1 shows five different types (G0, G1, G2, G3, G4) of 2×2-pixel grids with 0, 
1, 2, 3, and 4 black pixels representing five intensity levels. G2 has six possible combinations, 
G1 and G3 have four combinations, and G0 and G4 only have one combination. Based on the 
observation that the same Hamming weight simulates an approximate gray level, we propose a 
block-wise operation (a 2 × 2-pixel grid) to design the k-XDHS. This block-wise operation 
minimizes the Hamming weight and Hamming distance in a 2×2-pixel grid. Suppose that Pi,1, 
Pi,2, …, Pi,k represent the patterns of the ith block (a 2×2-pixel grid) in k cover images, and that 
Pi,k+1 is the pattern of the ith block in a secret image. The ,i jP′  patterns are the modified patterns 

of ,i jP , j∈[1, k+1]. Let w(⋅) and d(⋅) be the Hamming weight and Hamming distance functions, 

respectively. To obtain better visual quality in a halftone image, the modified patterns, ,i jP′ , in 
the proposed k-XDHS should satisfy the following three conditions. 

(X-1) ,1 , 2 , , 1.+
′ ′ ′ ′⊕ ⊕ =i i i k i kP P P P  

(X-2) Make 
1

1

k

j
j

+

=

∆ = ∆∑  as small as possible, with 
1

1

k

j
j

k
+

=

∆ − ∆∑  being the minimum,  

where ∆ j = , ,( ) ( )′−i j i jw P w P , 1≤j≤ k+1. 
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(X-3) Make 
1

1

k

j
j

d d
+

=

= ∑  as small as possible, with 
1

1

k

j
j

d k d
+

=

−∑  being the minimum,  

where , ,( )j i j i jd d P P′= − , 1≤j≤ k+1. 

 
                 (a)      (b)            (c)             (d)       (e) 

Fig. 1. Five 2×2-pixel grids and their combinations: (a) G0 with 0 black pixels, (b) G1 with 1 black pixel, 
(c) G2 with 2 black pixels, (d) G3 with 3 black pixels, (e) G4 with 4 black pixels. 

(X-1) is a decoding criterion and ensures a successful reconstruction of k-XDHS. (X-2) 
ensures that the ith blocks in all (k+1) images have, on average, intensity levels close to their 
original patterns (note: the same Hamming weight has the same intensity). In (X-3), we 
arrange the black and white pixels in a 2×2-pixel grid according to the original one. This 
ensure that the halftone image is shaded appropriately and retains the contours. (X-1) can be 
referred to as the decoding criterion, and the latter two criteria are contrast conditions. 
Concerning the contrast criteria, we first make sure of satisfying (X-2), and then (X-3). We 
attempt to find a minimum ∆ and ∆j, 1≤j≤k+1, which are as similar as possible. Our aim is to 
keep the same Hamming weight in a pattern (the same number of black pixels in a grid), which 
ensures that a grid has the same intensity. After satisfying (X-2), we permute the black pixels 
in a grid to find the minimum Hamming difference for retaining the contours. 

3. Proposed XDHS 
A trivial construction is the randomized k-XDHS. Suppose that pj is a pixel in Ij, j∈[1, 
k+1]. If pk+1 equals p1⊕p2⊕…⊕pk as it happens, we do nothing. When 
pk+1≠p1⊕p2⊕…⊕pk, we apparently can change any one pixel, pj , j∈[1, k+1], to obtain a 
successful decoding. In general, we averagely distribute the modified pixels in these (k+1) 
images to retain the same visual quality in all of the stego-images and the reconstructed 
image. Let (pi,1, pi,2, …, pi,k) and (p′i,1, p′i,2, …, p′i,k+1) be the i-pixels in k+1 original 
halftone images (I1, I2, …, Ik) and the modified i-pixels in the k+1 modified halftone 
images ( 1I ′ , 2

′I , …, 1+
′
kI ), respectively, where i∈[1, (x×y)] and the image size is (x×y). The 

formal encoding algorithm for the randomized k-XDHS is given as follows.  
Algorithm 1: Encryption of the randomized k-XDHS 
Input: k cover images I1−Ik; one secret image Ik+1. 
Output: 1I ′ ~ ′

kI . /* k stego-images */ 
1) Obtain the ith pixel (pi,1, pi,2, …, pi,k+1) from (I1, I2, …, Ik+1); 
2) For i=1 to (x × y) do { 

2-1) If pi,1⊕pi,2⊕…⊕pi,k=pi,k+1 then (p′ i,1, p′ i,2, …, p′ i,k+1)=(pi,1, pi,2, …, pi,k+1) else 
randomly flips one pixel in these k+1 pixels to gain new (p′ i,1, p′ i,2, …, p′ i,k+1). 
/* this modification holds p′ i,1⊕ p′ i,2⊕…⊕p′ i,k=p′ i,k+1 */ 
2-2) Put the pixels (p′ i,1, p′ i,2, …, p′ i,k) back to ( 1I ′ , 2

′I , …, ′
kI );}; 

3) Output k stego-images ( 1I ′ , 2
′I , …, ′

kI ). 

In the proposed k-XDHS, we use a block-wise operation (a 2×2-pixel grid) instead of a 
bit-wise operation in the randomized k-XDHS. When satisfying the contrast conditions, (X-2) 
and (X-3), it is correct that even though the block-wise operation has more modified pixels 
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than the bit-wise operation, it will minimize the visual distortion. We first describe our 
k-XDHS with k=2, and then extend the construction method from k=2 to k>2. 

3.1 Proposed k-XDHS with k = 2 
We describe the encrypting algorithm of our 2-XDHS using two cover images (I1 and I2) 
and one secret image (I3). Suppose a 2×2-pixel grid of the ith block in (I1, I2, I3) is the 
pattern P=(Pi,1, Pi,2, Pi,3), and the modified pattern in ( 1

′I , 2
′I , 3

′I ) is P′=( ,1
′

iP , , 2
′

iP , ,3
′

iP ), where, 
i∈[1, (x×y)/4]. Let a 3-tuple, H=(H1, H2, H3), be the Hamming weights of pattern P, 
where H1, H2, H3∈{0, 1, 2, 3, 4}. There are 35 combinations of H when we do not 
consider the order (H1, H2, H3). (Note: ( ) ( ) ( )5 5 535= 21 2 3+ × + ; for example, ( )5

1
 implies that H1, 

H2, and H3 have the same Hamming weight, there are ( )5
1

=5 patterns, H=(0, 0, 0), (1, 1, 1), 

(2, 2, 2), (3, 3, 3), and (4, 4, 4), respectively.) All 35 patterns are shown in Table 1 and 
Table 2. The 11 patterns (B1-B11) in Table 1 satisfy Pi,1⊕Pi,2=Pi,3 (condition (X-1)), 
while the 24 patterns (A1-A24) in Table 2 do not satisfy condition (X-1). We call the 
B-patterns (B1-B11) the unchangeable patterns, where we can permute the pixels in P to 
satisfy condition (X-1) and the values of (H1, H2, H3) do not require modification. The 
(Pi,1, Pi,2, Pi,3) in the A-patterns (A1-A24) do not satisfy condition (X-1) even though we 
permute the pixels. 

Table 1. Eleven unchangeable B-patterns 

Hamming weight in (Pi,1, Pi,2, Pi,3): (H1, H2, H3) 
(0, 0, 0)=B1 (0, 3, 3)=B4 (1, 2, 3)=B7 (2, 2, 2)=B10 
(0, 1, 1)=B2 (0, 4, 4)=B5 (1, 3, 4)=B8 (2, 3, 3)=B11 
(0, 2, 2)=B3 (1, 1, 2)=B6 (2, 2, 4)=B9  

 
However, we may modify H=(H1, H2, H3) to ( )1 2 3,  ,  H H H H′ ′ ′ ′= to change the A-patterns 
into B-patterns such that the patterns in H and H′ satisfy condition (X-2). For example, 
H=(1, 3, 3) in A16 does not satisfy condition (X-1). By changing it to B4, B7, B8, and B11, 
these four patterns have the minimum ∆=1 and 

3

1=

∆ − ∆∑ j
j

k =4/3 when compared with A16. 

Consider another case: H=(3, 4, 4) in A23. There are two B-patterns, B11=(2, 3, 3) and 
B8=(1, 3, 4), where ∆=3. At this time, B11 has ∆1=1, ∆2=1, ∆3=1, and 3

1=

∆ − ∆∑ j
j

k =0, while 

B8 has ∆1=2, ∆2=1, ∆3=0, and 3

1=

∆ − ∆∑ j
j

k =2. Hence, A23 is modified to B11. In the 

proposed k-XDHS, we change A-patterns into B-patterns, which is why we call the 
A-patterns changeable patterns.  

 
Notation Used 

jI  jI  of size (x×y), j∈[1, k+1]; two halftone cover images I1, I2, and one secret image I3 for 

k=2 

jI ′  jI ′  of size (x×y), j∈[1, k+1]; two stego-images 1I ′ , 2I ′ , and the reconstructed image 3I ′  for 

k=2 
(Pi,1, Pi,2, 
Pi,3) 

the 2×2-pixel grid of ith block in (I1, I2, I3), i∈[1, (x×y) /4] 
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(
,1iP′ ,

,2iP′ ,
,3iP′ ) the pattern of a 2×2-pixel grid in ( 1I ′ , 2I ′ , 3I ′ ) 

B1-B11 the unchangeable patterns (Pi,1, Pi,2, Pi,3), shown in Table 1 
A1-A24 the changeable patterns (Pi,1, Pi,2, Pi,3), shown in Table 2 

( )⋅M  modify the patterns in [A1-A24] to patterns in [B1-B11] according to Table 2 

( )⋅P  permute 4 pixels in (Pi,1, Pi,2, Pi,3) to ( ),1 ,2 ,3, ,i i iP P P′ ′ ′  where ,1 , 2 ,3
′ ′ ′⊕ =i i iP P P ;  all permutations 

labeled as P(Pi,1, Pi,2, Pi,3) are shown in Appendix Table A-1 
ri the probability of the modified pixels in jI ′ , j∈[1, 3], e.g., r1=r2=r3=1/3 implies that the 

number of modified pixels in 1I ′ , 2I ′ , and 3I ′  are almost same 

( )⋅PA  PA(I1, I2, …, Ik+1)={S1, S1, S3} is to partition (k+1) images (I1, I2, …, Ik+1) into three sets 
{S1, S1, S3}, where |Si |≥1 and |S1|+S2|+|S3|=(k+1); without loss of generality we could 
partition (I1, I2, …, Ik+1) into S1=

11 | |{ , , }SI I , S2=
1 1| | 1 | | |2 |{ , , }S S SI I

+ + , and 

S3=
1 2| | | | 1 1{ , , }S S kI I

+ + +
 . 

 
The corresponding modified B-patterns for an A-pattern that satisfies condition (X-2) 

are shown in Table 2. Consequently, we describe the encrypting algorithm of our (2, 
2)-XISSS. Some notations are defined above. 

Table 2. Twenty-four changeable A-patterns and their modified B-patterns satisfying condition (X-2). 

(H1, H2, H3) ( )1 2 3, ,H H H′ ′ ′  ∆ (H1, H2, H3) ( )1 2 3, ,H H H′ ′ ′  ∆ (H1, H2, H3) ( )1 2 3, ,H H H′ ′ ′  ∆ 

(0, 0, 1)=A1 B1; B2 1 (0, 2, 4)=A9 B4; B7; B8 2 (1, 4, 4)=A17 B5; B8 1 

(0, 0, 2)=A2 B2; B6 2 (0, 3, 4)=A10 B4; B5; B8 1 (2, 2, 3)=A18 B7; B9; B10; B11 1 

(0, 0, 3)=A3 B6 3 (1, 1, 1)=A11 B2; B6 1 (2, 3, 4)=A19 B8; B9; B11 1 

(0, 0, 4)=A4 B6 4 (1, 1, 3)=A12 B6; B7 1 (2, 4, 4)=A20 B8; B11 2 

(0, 1, 2)=A5 B2; B3; B6 1 (1, 1, 4)=A13 B7; B9 2 (3, 3, 3)=A21 B11 1 

(0, 1, 3)=A6 B7 2 (1, 2, 2)=A14 B3; B6; B7; B10 1 (3, 3, 4)=A22 B9; B11 2 

(0, 1, 4)=A7 B7 3 (1, 2, 4)=A15 B7; B8; B9 1 (3, 4, 4)=A23 B11 3 

(0, 2, 3)=A8 B3; B4; B7 1 (1, 3, 3)=A16 B4; B7; B8; B11 1 (4, 4, 4)=A24 B9 4 

 
Algorithm 2: Encryption of the proposed 2-XDHS 
Input: Two halftone cover images, I1 and I2; one halftone secret image, I3. 
Output: E2,2(I1, I2, I3)= 1I ′  and 2I ′ . /* two stego-images */ 
1) Obtain the ith block (Pi,1, Pi,2, Pi,3) from (I1, I2, I3); 
2) For i=1 to (x×y) /4 do { 

2-1) If (Pi,1, Pi,2, Pi,3)∈[B1-B11] then go to step (2-2) else (Pi,1, Pi,2, Pi,3)= ( ),1 ,2 ,3, ,i i iP P PM ; 

/* this makes ∆=∆1+∆2+∆3 as small as possible with 
3

1

3 j
j =

∆ − ∆∑  being minimum,  

i.e., satisfies  Condition (X-2) */ 
  2-2) Obtain all ( ),1 ,2 ,3, ,i i iP P P′ ′ ′  by ( ),1 ,2 ,3, ,i i iP P PP ; 

/* the permutation let ( ),1 ,2 ,3i i iP P P′ ′ ′⊕ =  satisfying Condition (X-1) */ 
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2-3) Find a pattern ( ),1 ,2 ,3, ,i i iP P P′ ′ ′  having the smallest 1 2 3d d d d= + +  with 
3

1

3 j
j

d d
=

−∑   

being minimum (note: if  more than one pattern, choose a ( ),1 ,2 ,3, ,i i iP P P′ ′ ′  with  
r1=r2=r3=1/3); 
/* this let ( ),1 ,2 ,3, ,i i iP P P′ ′ ′  hold condition (X-3), and the modifications are averagely  
distributed in 1I ′ , 2I ′  and 3I ′  */ 

2-4) Put ( ),1 ,2,i iP P′ ′  back to 1I ′  and 2I ′ ; }; 
3) Output two stego-images E2,2(I1, I2, I3)=( 1I ′  , 2I ′ ). 

Two simple examples are given to easily understand the encryption of our 2-XDHS. Let 
P=(P1, P2, P3) be a pattern in (I1, I2, I3). Example 1 shows how to process a B-pattern, while 
Example 2 deals with an A-pattern. 

Example 1: Encrypt a pattern P=(P1, P2, P3)= ( )  
  

  
    into ( )1 2 3, ,P P P P′ ′ ′ ′=  using the 

proposed 2-XDHS.  
Because P is an unchangeable pattern, B11, and also P1⊕P2= ( )

 ⊕ ( )
 = ( )

 ≠ P3, we 

can find all of the permutations of P satisfying P1⊕P2=P3. These consist of the following six 
patterns, ( )1 2 3, ,P P P P′ ′ ′ ′=  having the smallest d=4 with 3

1

3 j
j

d d
=

−∑ =8/3 being the 

minimum: ( )  
  

  
    with d1=0, d2=2, d3=2; ( )  

  
  
    with d1=2, d2=2, d3=0; 

( )  
  

  
    with d1=2, d2=2, d3=0; ( )  

  
  
    with d1=0, d2=2, d3=2; ( )  

  
  
    with 

d1=2, d2=0, d3=2; ( )  
  

  
    with d1=2, d2=0, d3=2. Choose a pattern ( ),1 ,2 ,3, ,i i iP P P′ ′ ′  and 

make the number of modified pixels in 1I ′ , 2I ′ , and 3I ′  as similar as possible, i.e., r1=r2=r3=1/3. 
All six patterns, P′ , have the same (H1, H2, H3)=(3, 3, 2) as P; thus, they have similar 
intensities. Moreover, the minimum difference in the Hamming distance preserves the contour 
of the image.  

Example 2: Encrypt a pattern P=(P1, P2, P3)= ( )  
  

  
    into ( )1 2 3, ,P P P P′ ′ ′ ′=  using the 

proposed 2-XDHS.  
Because P is a changeable pattern, A17, according to Table 2, we can change this pattern 

into B5 or B8, with ∆=1. Consider the case of changing it into B5. There is only one pattern 

( )  
  

  
    with the smallest d=1, with 

3

1

3 4 / 3j
j

d d
=

− =∑  being the minimum. Consider 

another case of changing it into B8. There is also one pattern ( )  
  

  
    with the smallest 

d=1, with 
3

1

3 4 / 3j
j

d d
=

− =∑  being the minimum. We can choose ( )  
  

  
    or 

( )  
  

  
    to make the number of modified pixels in 1I ′ , 2I ′ , and 3I ′  as similar as possible, 

i.e., r1=r2=r3=1/3.   

3.2 Proposed k-XDHS with k>2 
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We have (k+1) halftone images (I1, I2, …, Ik+1) in a k-XDHS. When considering (H1, 
H2, …, Hk+1) in the pattern (Pi,1, Pi,2, …, Pi,k+1), there will be too many changeable and 
unchangeable patterns in a k-XDHS. Here, we show an approach to construct a k-XDHS 
from the 2-XDHS. We first partition the k+1 images (I1, I2, …, Ik+1) into three sets {S1, S1, 
S3} by PA(I1, I2, …, Ik+1), where |Si |≥1 and |S1|+ |S2|+|S3|=(k+1). We perform the XOR 
operation for the images in each set to obtain three noise-like images, and then use them as 
the inputs of 2-XDHS. Finally, we averagely modify the pixels in the final k+1 modified 
halftone images ( 1 2 1,  ,  , kI I I

+
′ ′ ′ ) according to the three outputs (two-stego images and one 

reconstructed image) of the 2-XDHS. The formal encryption algorithm 3 and decryption 
algorithm 4 are described as follows. 

Algorithm 3: Encryption of the proposed k-XDHS 
Input: k halftone cover images I1−Ik; one halftone secret image Ik+1. 
Output: Ek,k(I1, I2, …, Ik+1)= 1 2,  ,  , kI I I′ ′ ′ . /* k stego-images */ 
1) Obtain a 3-partition {S1, S1, S3} by PA(I1, I2, …, Ik+1); 
2) Obtain three noise-like halftone images- O1=

11 | |SI I⊕ ⊕ ; O2=
1 1| | 1 | | |2 |S S SI I

+ +⊕ ⊕ ; 

O3=
1 2| | | | 1 1,S S kI I

+ + +
⊕ ⊕ ; 

3) Obtain 1 2 3,  and  O O O′ ′ ′ ; 
3-1) Get 1 2and  O O′ ′  by E2,2(O1, O2, O3)= 1 2( ,  )′ ′O O ; 

/* note: the probabilities r1, r2, and r3 used in Algorithm 2 are determined as r1=|S1|/(k+1), 
r2=|S2|/(k+1), and r3=|S3|/(k+1); the chosen probabilities make the modifications 
averagely distributed in the final images ( 1 2 1,  ,  , kI I I

+
′ ′ ′  */) 

3-2) 3 1 2O O O′ ′ ′= ⊕ ; 
4) Obtain the ith blocks, (Pi,1, Pi,2, Pi,3) and ( ),1 ,2 ,3, ,i i iP P P′ ′ ′ , from (O1, O2, O3) and 1 2 3( ,  , )O O O′ ′ ′ ,  

respectively; 
5) For j=1 to 3 do { 

5-1) For i=1 to (x×y) /4 do { 
If , ,i j i jP P′≠  then averagely modify the pixels of the images in the set Sj to satisfy 

, ,i j i jP P′= ; in the meantime, the modifications should satisfy conditions (X-2) and (X-3);} 

5-2) Put the modified pixels back into 1I ′ , 2I ′ , …, and kI ′ }; 
6) Output k stego-images Ek,k(I1, I2, …, Ik+1)=( 1 2,  ,  , kI I I′ ′ ′ ). 
 

It is computationally infeasible to directly deal with the changeable and unchangeable 
patterns of (H1, H2, …, Hk+1) in a k-XDHS for a large k. Our k-XDHS still uses the changeable 
and unchangeable patterns in a 2-XDHS. Such construction based on 2-XDHS reduces the 
complexity order to 2 for any k-XDHS. 

Algorithm 4: Decryption of the proposed k-XDHS 
Input: k stego-images I'1−I'k. 
Output: Dk,k(I'1, I'2, …, I'k). 
1) Print out k shadows on transparencies. Stack and align them on an overhead projector; 

/* It is possible to use a GIMP image editing tool instead of an overhead projector to 
superimpose the shadows in decoding */ 
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2) Decrypt the secret directly by HVS. 

4. Experiment and Security Analysis  

4.1 Experimental Results 
To reasonably evaluate halftone images, we applied a low-pass filter (LPF) (a Gaussian LPF 
with an 11×11 square matrix and a standard deviation of 2.0) to simulate HVS to measure the 
visual quality. The PSNR of this filtered image is the so-called modified peak signal-to-noise 
ratio (MPSNR). Example 4 shows the halftone images and the filtered halftone images of the 
proposed k-XDHS and the randomized k-XDHS for 2≤k≤5. 
 
Example 3: Construct the proposed k-XDHS and the randomized k-XDHS, 2≤k≤5, 
respectively. We used five 512×512 halftone images: I1(Lena), I2 (Pepper), I3 (Toy), I4 (Tank), 
I5 (Lake), and I6 (Jet). In a k-XDHS, we used I1, I2, …, Ik+1 images. For example, we used 
three images, I1 (Lena), I2 (Pepper), and I3 (Toy), in 2-XDHS. All six images will be used in 
5-XDHS. Fig. 3 shows the original halftone images and the halftone images filtered through 
an LPF. The experimental results of our 2-XDHS are shown in Fig. 4. The halftone 
stego-images are shown in Fig. 4-(a) and Fig. 4-(b), which reveal their filtered images. Fig. 5 
is the result of the randomized 2-XDHS. The MPSNRs of the original halftone images Lena, 
Pepper, and Toy are 27.82 dB, 26.88 dB, and 27.61 dB, respectively. The proposed 2-XDHS 
(respectively the randomized 2-XDHS) has MPSNRs of 22.90 dB (19.94 dB), 21.90 dB (19.37 
dB), and 22.83 dB (17.50 dB) for Lena, Pepper, and Toy, respectively.  These MPSNR values 
are consistent with a real situation. 
 

 
(a-1)                    (a-2)                  (a-3)            (b-1) 27.82 dB   (b-2) 26.88 dB   (b-3) 27.61 dB 

Fig. 3. Three images, I1 (Lena), I2 (Pepper), and I3 (Toy): (a) original halftone images and (b) filtered 
halftone images. 

 
(a-1)                   (a-2)                    (a-3)             (b-1) 22.90 dB    (b-2) 21.90 dB   (b-3) 22.83 dB 

Fig. 4. Three images, I1 (Lena), I2 (Pepper), and I3 (Toy) using proposed 2-XDHS: (a) halftone images 
and (b) filtered halftone images. 

The images in Fig. 4-(a) really have better visual quality than those in Fig. 5-(a). For 
example, we still see the curled hair in Lena (Fig. 4-(a-1)), while the hair is blurred in Fig. 
5-(a-1). Table 3 lists all of the MPSNRs of the original halftone images, the halftone images 
of the proposed k-XDHS, and the halftone images of the randomized k-XDHS for 2≤k≤5. It 
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can be seen that our schemes have better MPSNR values than the randomized schemes.  In 
particular, ours are more effective for k=2. Obviously, the improvement is reduced when k 
increases because the modifications are averagely distributed among the (k+1) images. The 
numbers and percentages of modified pixels for the schemes in Table 3 are shown in Table 4. 
It is observed that even though the proposed XDHS has a greater number of modified pixels 
than the randomized XDHS, our scheme has better MPSNR. For example, there are 62,431 
and 43,601 pixels in Lena that are modified in the proposed 2-XDHS and the randomized 
2-XDHS, respectively. However, Fig. 4-(b-1) has a better PSNR (22.90 dB compared to 19.94 
dB). This result proves that our block-wise operation effectively minimizes the visual 
distortion.  
 

 
(a-1)                (a-2)                    (a-3)             (b-1) 19.94 dB   (b-2) 19.37 dB   (b-3) 17.50 dB 

Fig. 5. Three images, I1 (Lena), I2 (Pepper), and I3 (Toy) using randomized 2-XDHS: (a) halftone 
images and (b) filtered halftone images. 

The proposed k-XDHS uses a block-wise operation to minimize the difference in the 
Hamming weight (condition (X-2)) and the difference in the Hamming distance (condition 
(X-3)) in a 2×2-pixel grid. Moreover, our k-XDHS satisfies condition (X-1) and can decode 
the secret. In contrast, the randomized k-XDHS only satisfies condition (X-1) by averagely 
modifying pixels in (k+1) images. To demonstrate the performance of our k-XDHS, we also 
compared our k-XDHS with the k-ODHS in [3] and (k, k)-EVCS in [14][18]. In fact, all of the 
VCSs were simultaneously effective for both OR and XOR decoding operations. Thus, the 
OR-ed and XOR-ed results of the (k, k)-EVCS are both shown for comparison.  Three schemes 
were used in the experiment: (I) 2-ODHS of Fu et al. [3], (II) (2, 2)-EVCS of Naor et al. [14], 
and (III) (2, 2)-EVCS of Liu et al. [18]. For these experiments, we used Lena and Pepper as 
stego-images and Toy as the secret image. 
Scheme-I (2-ODHS of Fu et al.): 
Fig. 6 shows the two stego-images: Lena (27.82 dB) and Pepper (26.71 dB). Although, 
the stego-images have a high MPSNR, we cannot reveal the secret Toy image in the 
stacked result (see Fig. 6-(a-3)). Actually, the hidden secret in the 2-ODHS of Fu et al. 
appears with a “normal” or “lower-than-normal” intensity in the reconstructed images. It 
is not suitable to hide a natural image. Figs. 6 (b) and (c) show the stacked results when 
the secret image is a printed letter A for the same cover image (Lena) and different cover 
images (Lena and Pepper), respectively. The secret A is indistinct in Fig. 6-(c) because of 
the effects of the different cover images. 
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          (a-1)                          (a-2)                         (a-3)                          (b)                           (c) 

Fig. 6. 2-ODHS: (a) secret image is natural halftone image Toy and (b) secret image is printed letter A 
for same cover. 

Scheme-II ((2, 2)-EVCS of Naor et al.): 

Construct the (2, 2)-EVCS of Naor et al. with m=4. The eight base matrices are 
00

0
1100
0110=  

 B
, 

01

0
1100
1110=  

 B
, 

10

0
1110
0110=  

 B
, 

11

0
1110
1110=  

 B
, 

00

1
1100
0011=  

 B
, 

01

1
1100
0111=  

 B
, 

10

1
1110
0011=  

 B
, 

11

1
1110
0111=  

 B
. We used 3B1W 

(respectively 4B0W) and 2B2W (respectively 3B1W) to represent the black and white pixels 
in the stego-images (respectively the reconstructed image). Suppose that all of the pixels in the 

two stego-images and the secret image are black, we should use 
11

1
1110
0111=  

 B
 to expand a secret 

pixel to 4 sub-pixels. The size of the stego-image is expanded four times.  

 
(a-1)                     (a-2)                      (a-3)                      (b)                       (c)                         (d) 

Fig. 7. (2, 2)-EVCS of Naor et al. 

Fig. 7-(a) shows the OR-ed result, where the MPSNRs of Lena, Pepper, and Toy are 14.32 dB, 
13.28 dB, and 13.25 dB, respectively. Fig. 7-(b) is the XOR-ed result of Fig. 7-(a-1) and Fig. 
7-(a-2). Fig. 7-(c) and (d) are the OR-ed and XOR-ed results when using a printed letter A as 
the secret. It is observed that (2, 2)-EVCS of Naor et al. is only suitable to hide a simple printed 
letter image; moreover the XOR-ed result contains the remnant cover images. 
Scheme-III ((2, 2)-EVCS of Liu et al.): 
Construct (2, 2)-EVCS of Liu et al. with m=4. The eight base matrices (2, 2)-EVCS are 

00

0
1000
1000=  

 B
,

01

0
1000
1011=  

 B
,

10

0
1011
1000=  

 B
, 

11

0
1011
1011=  

 B
, 

00

1
1000
0100=  

 B
, 

01

1
1000
0111=  

 B
, 

10

1
1011
0100=  

 B
, 

11

1
1011
0111=  

 B
. Fig. 8-(a) 

shows the OR-ed result of (2, 2)-EVCS, where the MPSNRs of the two stego-images, 
Lena and Pepper, are 19.46 dB and 17.49 dB, respectively. The OR-ed result (Fig. 8-(a-3)) 
and the XOR-ed result (Fig. 8-(b)) are terribly degraded, where the Toy image cannot be 
recognized successfully. Fig. 8-(c) and (d) are the OR-ed and XOR-ed images when using 
a printed letter image A as the secret. The (2, 2)-EVCS of Liu et al. produces better visual 
quality in stego-images than the (2, 2)-EVCS of Naor et al. (note: 3B1W and 1B3W for 
black and white colors in stego-images), but results in a poor reconstructed image. 
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(a-1)                     (a-2)                      (a-3)                      (b)                        (c)                        (d) 

Fig. 8. (2, 2)-EVCS of Liu et al. 

Table 3. Comparison between proposed XDHS and randomized XDHS. 

Halftone 
(MPSNR) 

 (k, k)-XISSS  

I1: Lena 
(27.82 dB) 

I2: Pepper 
(26.88 dB) 

I3: Toy 
(27.61 dB) 

I4: Tank 
(26.97 dB) 

I5: Lake 
(24.24 dB) 

I6: Jet 
(25.58 dB) 

k=2 
our scheme 22.90 dB 21.90 dB 22.83 dB − − − 

randomized scheme 19.94 dB 19.37 dB 17.50 dB − − − 

k=3 
our scheme 23.58 dB 23.04 dB 23.91 dB 24.36 dB − − 

randomized scheme 21.64 dB 20.76 dB 19.53 dB 22.27 dB − − 

k=4 
our scheme 24.50 dB 23.70 dB 24.51 dB 24.56 dB 21.89 dB − 

randomized scheme 22.62 dB 21.72 dB 20.87 dB 23.06 dB 20.27 dB − 

k=5 
our scheme 25.34 dB 25.00 dB 25.19 dB 25.00 dB 22.91 dB 24.20 dB 

randomized scheme 23.29 dB 22.38 dB 21.80 dB 23.59 dB 20.90 dB 21.50 dB 
 

A comparison of the experimental results for the proposed k-XDHS, randomized k-XDHS, 
k-ODHS, and (k, k)-EVCS is summarized in Table 5. Our k-XDHS produced the best visual 
quality for stego-images and the reconstructed image. In addition, we could hide the natural 
halftone image. The other schemes were suitable for hiding the printed-letter image. All of the 
above schemes provide the feature of viewing the hidden image directly on stego-images. 

4.2 Security Analysis 
Our k-XDHS with k>2 is an extension of the proposed 2-XDHS. The randomized 2-XDHS uses 
the bitwise XOR-ed operation and works as a one-time pad. If there is no vulnerability in the 
randomization process (step (2-1) of Algorithm 1, which randomly flips one pixel in k+1 
pixels when pi,1⊕…⊕pi,k ≠pi,k+1, it is not possible to gain anything from a stego-image. 
Therefore, the randomized 2-XDHS is unbreakable and clearly secure. Our 2-XDHS is not a 
one-time pad like the randomized 2-XDHS. 

Table 4. Number and percentage of modified pixels for proposed k-XDHS and randomized k-XDHS. 

halftone image 
 (k, k)-XISSS  I1: Lena I2: Pepper I3: Toy I4: Tank I5: Lake I6: Jet 

k=2 
our scheme 62431 

(23.81%) 
60300 

(23.00%) 
64893 

(24.75%) − − − 

randomized scheme 43601 
(16.63%) 

43780 
(16.70%) 

43671 
(16.65%) − − − 

k=3 
our scheme 44170 

(16.84%) 
44460 

16.9601% 
42847 

(16.34%) 
44539 

(16.99%) − − 

randomized scheme 32843 
(12.52%) 

32660 
(12.45%) 

32757 
(12.49%) 

32507 
(12.40%) − − 

k=4 
our scheme 38175 

(14.56%) 
37798 

(14.41%) 
38222 

(14.58%) 
37815 

(14.42%) 
38753 

(14.78%) − 

randomized scheme 26333 26355 26067 26407 26051 − 
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(10.04%) (10.05%) (9.94%) (10.07%) (9.93%) 

k=5 
our scheme 33851 

(12.91%) 
32415 

(12.36%) 
33588 

(12.81%) 
32649 

(12.45%) 
33201 

(12.66%) 
33337 

(12.71%) 

randomized scheme 21937 
(8.36%) 

21878 
(8.34%) 

21807 
(8.31%) 

22132 
(8.44%) 

21599 
(8.23%) 

21900 
(8.35%) 

 

Table 5. Comparison of k-XDHS, k-ODHS, and (k, k)-EVCS. 

                scheme 
capability 

proposed 
k-XDHS 

randomized 
k-XDHS k-ODHS (k, k)-EVCS 

visual quality Excellent Good Poor Poor 
secret image natural image natural image printed-text printed-text 
decoding operation XOR XOR OR OR/XOR 
image expansion NO NO NO YES 
easy decoding* YES YES YES YES 

* the hidden image can be viewed directly on stego-images 
 

An attacker could use the prior probabilities to try to compromise the secrecy. We first 
determine all of the prior probabilities, ( | )Q j i , that the grid in a secret image is Gi and the 
grid in a stego-image is Gj, where i∈[0, 4] and j∈[0, 4]. For example, (1 | 3)Q denotes the 
probability that a grid in a secret image has w(G3)=3, while the grid in a stego-image has 
w(G1)=1.  

3G

B4=(0, 3, 3)

3G
( )
( )
( )
( )
( )

0

1

2

3

4

(B4)/2
(B7)/2+ (B8)/2
(B7)/2+ (B11)/2
(B4)/2+ (B11)/2
(B8)/2

G Q
G Q Q
G Q Q
G Q Q
G Q

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

,  ,

,  .

= + = +

= + = +

     
     
     
     3 ( (B4)/2)G Q

0 ( (B4)/2)G Q
3G

B7=(1, 2, 3)

2 ( (B7)/2)G Q

1( (B7)/2)G Q
3G

B8=(1, 3, 4)

4 ( (B8)/2)G Q

1( (B8)/2)G Q
3G

B11=(2, 2, 3)

3 ( (B11)/2)G Q

2 ( (B11)/2)G Q

the stego-image may be G0 and G3  
with the probability Q(B4)/2, 
respectively, for B4 case

(a)                                                                                                            (b)

3G

B4=(0, 3, 3)

3G

0G

 
Fig. 9. Probability Q(j|3) in proposed 2-XDHS: (a) all Q(j|3), 0≤j≤4 (b) B4 case. 

The following shows how to determine the probabilities of ( | 3)Q j , 0≤j≤4. By observation, 
there are only B4, B8, B7, and B11 having the grid G3. As shown in Fig. 9, for the case B4, if 
a grid in a secret image has w(G3)=3, the grid in the stego-image may have Hamming weight 
w(G3)=3 and w(G0)=0 with the half probability. Consider all four cases (B4, B8, B7, and B11). 
Then, we have 

(0 | 3) : (1 | 3) : (2 | 3) : (3 | 3) : (4 | 3)

(B4) : ( (B7) (B8)) : ( (B7) (B11)) : ( (B4) (B11)) : (B8),= + + +

Q Q Q Q Q

Q Q Q Q Q Q Q Q
 

where Q(B4), Q(B7), Q(B8), and Q(B11) are the probabilities of B4, B7, B8, and B11, 
respectively, using two stego-images and the reconstructed image. The probabilities of 

( | 3)Q j , 0≤j≤4 are then calculated as follows. 
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3

3

3

3

3

3

(0 | 3) (B4) ;

(1 | 3) ( (B7) (B8)) ;
(2 | 3) ( (B7) (B11)) ;                                                                  
(3 | 3) ( (B4) (B11)) ;
(4 | 3) (B8) ;

where 2 ( (B4) (B8) (B7) (B1

=

= +
= +
= +
=

= × + + +

Q Q Q

Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q

Q Q Q Q Q

(1)

1)).










  

By the same approach, from Fig. 10, the other values of other probabilities, ( | 0)Q j , 
( | 1)Q j , ( | 2)Q j , and ( | 4)Q j , are shown in Eqs. (2)-(5). 

0

0

0

0

0

0

(0 | 0) (B1) ;

(1 | 0) (B2) ;

(2 | 0) (B3) ;
                               (2)

(3 | 0) (B4) ;

(4 | 0) (B5) ;

where (B1) (B2) (B3) (B4) (B5).

=

=

=

=

=

= + + + +











Q Q Q

Q Q Q

Q Q Q

Q Q Q

Q Q Q

Q Q Q Q Q Q

 

( )
( )
( )

( )

1

1

1

1

1

(0 | 1) 0.5 (B2)

(1 | 1) 0.5 (B2) (B6)

(2 | 1) 0.5 (B6) (B7)
                      

(3 | 1) 0.5 (B7) (B8)

(4 | 1) 0.5 (B8) (B2) (B6) (B7) (B8) ;

where =Q(B2)+Q(B6)+Q(B7)+Q(B8).

;

;

;

;

= ×

= × +

= × +

= × +

= × + + +











Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q Q Q

Q

(3)  

( )
( )
( )

2

2

2

2

2

2

(0 | 2) 0.5 (B3)

(1 | 2) (B6) 0.5 (B7)

(2 | 2) 0.5 ( (B3) (B9)) (B10)
    (4

(3 | 2) 0.5 (B7) (B11)

(4 | 2) 0.5 (B9) ;

where =Q(B3)+Q(B6)+Q(B7)+Q(B9) (B10) (B11).

;

;

;

;
             

= ×

= + ×

= × + +

= × +

= ×

+ +











Q Q Q

Q Q Q Q

Q Q Q Q Q

Q Q Q Q

Q Q Q

Q Q Q

)  

4

4

4

4

4

4

(0 | 4) 0.5 (B5) ;

(1 | 4) 0.5 (B8) ;

(2 | 4) (B9) ;
                                                            (5)

(3 | 4) 0.5 (B8) ;

(4 | 4) 0.5 (B5) ;

where (B5) (B8) (B9).

= ×

= ×

=

= ×

= ×

= + +











Q Q Q

Q Q Q

Q Q Q

Q Q Q

Q Q Q

Q Q Q Q

 

There are a total of 35 patterns, and thus the probability of occurrence for each pattern 
(A-patterns and B-patterns) is 1/35. A-patterns will be modified into B-patterns (see step 
(2-1) of Algorithm 2). Thus, we only have B-patterns.  

From Table 2, B1 may come from A8, A9, and A10 with the probability 1/3×1/35 and 
from A16 with the probability 1/4×1/35. Finally, 
Q(B4)=1/35+1/3×1/35+1/3×1/35+1/4×1/35=9/140. By the same approach, we have 
Q(B7)=23/140, Q(B8) = 1

314 / 140 , and Q(B11) = 1
319 / 140 . From Eq. (1), and the values of 
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Q(B4), Q(B7), Q(B8), and Q(B11), we determine (0 | 3)Q = 6.8%. All of the prior 
probabilities, ( | )Q j i , are shown in Table 6. 

We now show how an attacker could use the prior probabilities for cryptanalysis. We 
first precisely define the scope of the secrecy ensured by our proposed XDHS. An 
attacker’s knowledge is described as follows. He has the detailed procedure of Algorithm 
2, but does not have the two pieces of randomization information of step (2-1) and step 
(2-3) in Algorithm 2. The first piece of randomization information is that an attacker does 
not actually know whether the B-pattern comes from an A-pattern or was originally a 
B-pattern. 

 

Table 6. Probabilities of ( | )Q j i  for 0≤ i, j
 
≤4. 

 

( | )Q j i  i=0 i=1 i=2 i=3 i=4 
j=0 14.5% 8.2% 4.2% 6.8% 9.8% 
j=1 27.4% 23.0% 34.6% 28.4% 19.2% 
j=2 18.5% 31.4% 19.2% 32.3% 42.0% 
j=3 21.8% 27.0% 33.5% 21.6% 19.2% 
j=4 17.8% 10.4% 8.5% 10.9% 9.8% 

 
The second piece of randomization information is that an attacker has no information 

about which pixel is modified when the pattern is modified to satisfy condition (X-1). The 
argument that an attacker cannot gain a secret image by using the prior probabilities is 
reasonable because of the following rationales. 

(a) The Hamming weight in grid Gj of a secret image may be changed in step (2-1) of 
Algorithm 2 (note: a B-pattern may come from an A-pattern).  

(b) Even though an attacker obtains a correct Hamming weight for grid Gj, he cannot get 
the correct arrangement.  

(c) It seems that an attacker can obtain a secret image by using the following approach. An 
attacker regards G0 and G1 as white areas, and G3 and G4 as black areas; also half of 
G2 is regarded as a black area and half as a white area. From Table 6, all of the 

(0 | )Q i + (1 | )Q i  and (3 | )Q i + (4 | )Q i , 0≤i≤4 are calculated. 
(0 | 0) (1 | 0) 41.9%,  (3 | 0) (4 | 0) 39.6%;

(0 | 1) (1 | 1) 31.2%,  (3 | 1) (4 | 1) 37.4%;

(0 | 2) (1 | 2) 38.8%,  (3 | 2) (4 | 2) 42.0%;

(0 | 3) (1 | 3) 35.2%,  (3 | 3) (4 | 3) 32.5%;

(0 | 4) (1 | 4) 29.0%,  (3 | 4) (4 | 4) 2

+ = + =

+ = + =

+ = + =

+ = + =

+ = + =

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

                                  (6)

9.0%;









 

By (6), (0 | )Q i + (1 | )Q i  and (3 | )Q i  + (4 | )Q i  are almost the same. Thus, it is not 
possible to obtain the secret image from a stego-image using the above approach. 
Suppose an attacker adopts this approach to recover the secret images in a 2-XDHS. The 
cover images are 512×512 halftone images, Lena (I1) and Pepper (I2), and the secret 
image is Toy (I3). A stego-image (Lena) is given. As shown in Fig. 11, the reconstructed 
image for I3 from this attack is noise-like. Thus, it is impossible to visually decode the 
secret. 
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Fig. 10. Probabilities Q(j|0), Q(j|1), Q(j|2), and Q(j|4) in proposed 2-XDHS: (a) Q(j|0), (b) Q(j|1), 

(c) Q(j|2), and (d) Q(j|4). 

In a 2-XDHS, there are only three images (two stego-images (I1, I2) and one secret image 
(I3)). There is a high probability of Pi,1⊕Pi,2=Pi,3. Suppose that a secret is an entirely white 
background. This probability will even be higher, and allows one to visually reveal the 
boundary artifacts around a stego-image in the other stego-image. 

 

 
Fig. 11. Reconstructed image by regarding G0 and G1 (respectively G3 and G4) as white (respectively 

black), and randomly choosing black or white for G2. 

Fig. 12-(a) shows the visible boundary around the I2 in I1, where I1 and I2 are two 
stego-images, Lena and Pepper, when using an entirely white image as a secret image. The 
appearance of boundary artifacts also occurs in the randomized 2-XDHS (see Fig. 12-(b)). 
However, this information leakage will diminish as k increases.  
 

    
(a-1)                           (a-2)                             (b-1)                          (b-2)  

Fig. 12. Visible boundary artifacts around I2 in I1, where I1 and I2 are two stego-images, Lena and 
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Pepper, when using an entirely white image as a secret image: (a) proposed 2-XDHS and (b) 
randomized 2-XDHS. 

Fig. 13 and 14 show that the proposed (4, 4)-XISSS and randomized (4, 4)-XISSS do not have 
visible boundary artifacts even when using an entirely white secret image. In relation to data 
hiding, imperceptibility is a major essential consideration. Step (2) in Algorithm 2 can be 
modified as step (2′) to completely solve this problem of information leakage: 

2′) For i=1 to (x×y) /4 do { 
2′-1) If (Pi,1, Pi,2, Pi,3)∈[B1-B11] then go to step (2-2)  

else (Pi,1, Pi,2, Pi,3)= ( ),1 ,2 ,3, ,i i iP P PM ; 

2′-2) Obtain all ( ),1 ,2 ,3, ,i i iP P P′ ′ ′  by ( ),1 ,2 ,3, ,i i iP P PP ; 
2′-3) Do Case 1 with probability r0, and do Case 2 with probability (1− r0); 

Case 1: Randomly choose one pattern ( ),1 ,2 ,3, ,i i iP P P′ ′ ′  in all patterns ( ),1 ,2 ,3, ,i i iP P P′ ′ ′ ; 

Case 2: Find a pattern ( ),1 ,2 ,3, ,i i iP P P′ ′ ′  having the smallest 1 2 3d d d d= + +  with 
3

1

3 j
j

d d
=

−∑  being minimum (note: if more than one pattern, choose a 

( ),1 ,2 ,3, ,i i iP P P′ ′ ′  with r1=r2= r3=1/3); 
/* even though an original pattern (Pi,1, Pi,2, Pi,3) satisfies (X-1) and has  

∆=d=0, it will be modified with probability r0. */ 
2′-4) Put ( ),1 ,2,i iP P′ ′  back to 1I ′  and 2I ′ ; }; 

    
               (a)                                         (b)                                (c)                              (d)  

Fig. 13. Four stego-images of proposed 4-XDHS, Lena, Pepper, Toy, and Tank, when using entirely  
white image as secret image. 

The visible boundary artifacts can be avoided by adjusting threshold probability r0, which 
can control the trade-off between the visual quality of all of the images and the remnant 
boundary artifacts. Notice that step (2′) is reduced to step (2) for r0=0. Actually, this 
information leakage will not occur when exclusively using natural images for all of the 
images, rather than the extreme case of using an entirely white (or black) image. 
 

    
(a)                               (b)                               (c)                             (d) 

Fig. 14. Four stego-images of randomized 4-XDHS, Lena, Pepper, Toy, and Tank, when using an 
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entirely white image as a secret image. 

5. Conclusions 
This paper proposed a novel k-XDHS to hide a natural halftone image in k natural halftone 
images. The XDHS was shown to minimize the difference in visual quality between the 
stego-image and the cover image (a natural image). When k-XDHS was compared with 
the randomized XDHS, our block-wise approach satisfied condition (X-2) (minimize the 
Hamming weight) and condition (X-3) (minimize the Hamming difference). Our scheme 
had better MPSNR than the randomized scheme, and obtained more effective 
performance for k=2. Moreover, our k-XDHS produced the best visual quality in stego 
images, compared to k-ODHS and (k, k)-EVCS. In addition, it can hide a natural halftone 
image. In order to increase the security of our scheme, we used 35 patterns. Thus, the 
probability of occurrence for each pattern (A-patterns and B-patterns) was 1/35. A 
thorough security analysis showed that even if an attacker could gain the prior 
probabilities for an attack, he could not reveal a secret image by using these probabilities. 
Finally, our XDHS effectively minimized the visual distortion, demonstrated high 
MPSNRs for stego images, and achieved a strong level of secrecy.  
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Appendix 

Table A-1. Permutation of patterns B1-B11 holding Pi, 1⊕Pi, 2=Pi, 3. 

pattern  
(H1, H2, H3) 

permute 4 binary pixels in a 2×2-pixel grid 
P (Pi,1, Pi,2, Pi,3) 

B1 ( )  
  

  
  

. 

B2 ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

.  

B3 ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

. 

B4 ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

. 

B5 ( )  
  

  
  

. 

B6 
( )  

  
  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, 

( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

. 

B7 
( )  

  
  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, 

( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

. 

B8 ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

 

B9 ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

. 

B10 
( )  

  
  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
  

  
  

, ( )  
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