Acknowledgement
Supported by : 한국연구재단
References
- Abosedra, S. and Baghestan, H. (2004), On the predictive accuracy of crude oil prices, Energy Policy, 32, 1389-1393. https://doi.org/10.1016/S0301-4215(03)00104-6
- Akarca, A. T. and Andrianacos D. (1997), Detecting break in oil price series using the box-tiao method, International Advances in Economic Research, 3(2), 217-224. https://doi.org/10.1007/BF02294942
- Amano, R. A. and Norden, S. V. (1998), Exchange rates and oil prices, Review of International Economics, 6(4), 683-694. https://doi.org/10.1111/1467-9396.00136
- Basher, S. A. and Sadorsky P. (2006), Oil price risk and emerging stock markets, Global Finance Journal, 17, 224-251. https://doi.org/10.1016/j.gfj.2006.04.001
- Birol, F. (2004), Analysis of the impact of high oil price on the global economy, International Energy Agency, 1-15.
- Cheng, H. and Tan, P. N. (2008), Semi-supervised Learning with Data Calibration for Long-Term Time Series Forecasting, Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, 133-141.
- Cortazar, G. and Schwartz, E. S. (2003), Implementing a stochastic model for oil futures prices, Energy Economics, 25, 215-238.
- He, L. Y., Fan, Y., and Wei Y. M. (2009), Impact of speculator's expectations of returns and time scales of investment on crude oil price behaviors, Energy Economics, 31, 77-84. https://doi.org/10.1016/j.eneco.2008.07.006
- Keong, Y. S. (2009), Economic forecasting-de-mystifying the art of modern crystallomancy, Singapore Institute of Statistics.
- Lanza, A., Manera, M., and Giovannini, M. (2005), Modeling and forecasting cointegrated relationships among heavy oil and product prices, Energy Economics, 27, 831-848. https://doi.org/10.1016/j.eneco.2005.07.001
- Mirmirani, S. and Li, H. C. (2004), A comparison of VAR and neural networks with genetic algorithm in forecasting price of oil, Advances in Economics, 19, 203-223. https://doi.org/10.1016/S0731-9053(04)19008-7
- Morana, C. (2001), A semiparametric approach to short-term oil price forecasting, Energy Economics, 23, 325-337. https://doi.org/10.1016/S0140-9883(00)00075-X
- Shin, H., Lisewski, A. M., and Lichtarge, O. (2007), Graph sharpening plus graph integration: a synergy that improves protein functional classification, Bioinformatics, Oxford University Press, 23(23), 3217- 3224.
- Shin, H., Hill, N. J., Lisewski, N. J., and Park J. S. (2010), Graph sharpening, Expert Systems with Applications, 37, 7870-7879. https://doi.org/10.1016/j.eswa.2010.04.050
- Stevens, P. (1995), The determination of oil prices 1945-1995, Energy Policy, 23(10), 861-870. https://doi.org/10.1016/0301-4215(95)00092-W
- Svensson, L. E. O. (2005), Oil prices and ECB monetary policy, Committee on Economic and Monetary Affairs, 1-4.
- Verleger, P. K. (1993), Adjusting to volatile energy prices, Institute for International Economics, 23(3), 325-338.
- Xie, W., Yu, L., Xu, S. Y., and Wang, S. Y. (2006), A new method for crude oil price forecasting based on support vector machines, International Conference on Computational Science, 3994, 444- 451.
- Yousefi, S., Weinreich, I., and Reinarz, D. (2005), Wavelet-based prediction of oil prices, Chaos Solitons and Fractals, 25, 265-275. https://doi.org/10.1016/j.chaos.2004.11.015
- Yu, L., Wang, S. Y., and Lai, K. K. (2008), Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm, Energy Economics, 30(5), 2623-2635. https://doi.org/10.1016/j.eneco.2008.05.003
Cited by
- Electricity Demand Forecasting based on Support Vector Regression vol.24, pp.4, 2011, https://doi.org/10.7232/IEIF.2011.24.4.351
- Stock Trading Model using Portfolio Optimization and Forecasting Stock Price Movement vol.39, pp.6, 2013, https://doi.org/10.7232/JKIIE.2013.39.6.535