참고문헌
- Croiser, R. B. (1988), Multivariate Generations of Cumulative Sum Quality Control Schemes, Technometrics, 30(3), 291-303. https://doi.org/10.1080/00401706.1988.10488402
- Gani, W., Taleb, H., and Limam, M. (2010), An assessment of the kernel-distance-based multivariate control chart through an industrial application, Quality and Reliability Engineering International, Early View.
- Kumar, S., Choudhary, A. K., Kumar, M., Shankar, R., and Tiwari, M. K. (2006), Kernel distance-based robust support vector methods and its application in developing a robust K-chart, International Journal of Production Research, 44(1), 77-96. https://doi.org/10.1080/00207540500216037
- Lee, J. M., Yoo, C. K., Choi, S. W., Vanrolleghem, P. A., and Lee, I. B. (2004), Nonlinear process monitoring using kernel principal component analysis, Chemical Engineering Science, 59, 223-234. https://doi.org/10.1016/j.ces.2003.09.012
- Lowry, C. A., Woodall, W. H., Champ, C. W., Rigdon, S. E. (1992), A Multivariate Exponentially Weighted Moving Average Control Chart, Technometrics, 34(1), 46-53. https://doi.org/10.2307/1269551
- Montgomery, D. C. (2005), Introduction to Statistical Quality Control, Fifth edition. Wiley, New York, NY.
- Pignatiello, J. J., Jr. and Runger, G. C. (1990), Comparison of multivariate CUSUM charts, Journal of Quality Technology, 22(3), 173-186.
- Phillpotts, D. (2007), Nonlinear fault detection and diagnosis using Kernel based techniques applied to a pilot distillation column, Master's Dissertation, University of Pretoria, South Africa.
- Sukchotrat, T., Kim, S. B., and Tsung, F. (2010), One-class classification-based control charts for multivariate process monitoring, IIE Transactions, 42(2), 107-120.
- Scholkopf, B., Smola, A. J., and Muller, K. (1998), Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, 10(5), 1299-1399. https://doi.org/10.1162/089976698300017467
- SUN, R. and TSUNG, F. (2003), A Kernel-distance-based multivariate control charts using support vector methods, International Journal of Production Research, 41(13), 2975-2989. https://doi.org/10.1080/1352816031000075224
- Tax, D. M. J. and Duin, R. P. W. (2004), Support vector data description, Machine Learning, 54(1), 45-66. https://doi.org/10.1023/B:MACH.0000008084.60811.49
- Vapnik, V. N. (1998), Statistical Learning Theory, Wiley, New York, NY.
- Yoo, C. K. and Lee, I. B. (2006), Nonlinear multivariate filtering and bioprocess monitoring for supervising nonlinear biological processes, Process Biochemistry, 41(8), 1854-1863. https://doi.org/10.1016/j.procbio.2006.03.038
- Zhanga, J., Martinb, E. B. and Morrisa, A. J. (1997), Process monitoring using non-linear statistical techniques, Chemical Engineering Journal, 67(3), 181-189. https://doi.org/10.1016/S1385-8947(97)00048-X