References
- Andersen, L. B. G. and Brotherton-Ratcliffe, R. (1997). The equity option volatility smile: An implicit finite- difference approach, Journal of Computational Finance, 1(2), 5-37.
- Black, F. and Scholes, M. (1973), The Pricing of Options and Corporate Liabilities, Journal of Politics and Economics, 81, 637-654. https://doi.org/10.1086/260062
- Broadie, M., Glasserman, P., and Kou, S. G. (1997), A Continuity Correction for Discrete Barrier Options, Mathematical Finance, 7(4), 325-348. https://doi.org/10.1111/1467-9965.00035
- Cont, R. and da Fonseca, J. (2002), Dynamics of Implied Volatility Surfaces, Quantitative Finance, 2, 45-60. https://doi.org/10.1088/1469-7688/2/1/304
- Derman, E. and Kani, I. (1994), Riding on a smile, RISK, 7(2), 32-39.
- Derman, E., Kani, I., Ergener, D., and Bardhan, I. (1995), Enhanced Numerical Methods for Options with Barriers, Goldman Sachs Working Paper.
- Dempster, M. A. H. and Richards, D. G. (2000), Pricing American options fitting the smile, Mathematical Finance, 10(2), 157-177. https://doi.org/10.1111/1467-9965.00087
- Dumas, B., Fleming, J., and Whaley, R. E. (1998), Implied Volatility Functions: Empirical Tests, Journal of Finance, 53, 2059-2106. https://doi.org/10.1111/0022-1082.00083
- Dupire, B. (1994), Pricing with a smile, Risk, 7, 18-20.
- Fengler, Matthias R. (2005), Semiparametric Modeling of Implied Volatility, Springer, Berlin.
- Fengler, M. R. (2005), Arbitrage-free Smoothing of the Implied Volatility Surface, Quantitative Finance, 9, 417-428.
- Garcia, R. and Gencay, R. (2000), Pricing and Hedging Derivatives with Neural Networks and a Homogeneity Hint, Journal of Econometrics, 94, 93-115. https://doi.org/10.1016/S0304-4076(99)00018-4
- Gencay, R. and Qi, M. (2001), Pricing and Hedging Derivatives with Neural Networks: Bayesian Regularization, Early Stopping, and Bagging, IEEE Trans. on Neural Networks, 12, 726-734. https://doi.org/10.1109/72.935086
- Han, G.-S. and Lee, J. (2008), Prediction of pricing and hedging errors for equity linked warrants with Gaussian process models, Expert Systems with Applications, 35, 515-523. https://doi.org/10.1016/j.eswa.2007.07.041
- Han, G.-S., Kim, B.-H., and Lee, J. (2009), Kernel-based Monte Carlo simulation for American option pricing, Expert Systems with Applications, 36, 4431-4436. https://doi.org/10.1016/j.eswa.2008.05.004
- Haug , Espen Gaardner (2007), The Complete Guide to Option Pricing Formulas, 2nd edition, McGraw- Hill, New York
- Hull, J. C. (2009), Options, Futures, and Other Derivatives, 7th edition, Prentice Hall, New Jersey.
- Hutchinson, J. M., Lo, A. W., and Poggio, T. (1994), A Nonparametric Approach to Pricing and Hedging Derivatives Securities via Learning Networks, Journal of Finance, 59, 851-889.
- Jung, K.-H., Lee, D., and Lee, J. (2010), Fast Supportbased Clustering for Large-scale Problems, Pattern Recognition, 43, 1975-1983. https://doi.org/10.1016/j.patcog.2009.12.010
- Konstantinidi, E., Skiadopoulos, G., and Tzagkaraki, E. (2008), Can the Evolution of Implied Volatility be Forecasted? Evidence from European and US Implied Volatility Indices, Journal of Banking & Finance, 32, 2401-2411. https://doi.org/10.1016/j.jbankfin.2008.02.003
- Kim, N., Lee, J., and Han, G. S. (2009), Model Averaging Methods for Estimating Implied and Local Volatility.
Cited by
- Multi-basin particle swarm intelligence method for optimal calibration of parametric Levy models vol.39, pp.1, 2011, https://doi.org/10.1016/j.eswa.2011.07.039