DOI QR코드

DOI QR Code

Antifungal Activity of Decursinol Angelate Isolated from Angelica gigas Roots Against Puccinia recondita

당귀로부터 분리한 decursinol angelate의 밀 붉은녹병에 대한 항균활성

  • Yoon, Mi-Young (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Young-Sup (Biomaterials Research Center, Korea Research Institute of Chemical Technology) ;
  • Choi, Gyung-Ja (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Jang, Kyoung-Soo (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong-Ho (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Cha, Byeong-Jin (Department of Plant Medicine, Chungbuk National University) ;
  • Kim, Jin-Cheol (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology)
  • 윤미영 (한국화학연구원 산업바이오화학연구센터) ;
  • 김영섭 (한국화학연구원 바이오소재연구센터) ;
  • 최경자 (한국화학연구원 산업바이오화학연구센터) ;
  • 장경수 (한국화학연구원 산업바이오화학연구센터) ;
  • 최용호 (한국화학연구원 산업바이오화학연구센터) ;
  • 차병진 (충북대학교 식물의학과) ;
  • 김진철 (한국화학연구원 산업바이오화학연구센터)
  • Received : 2011.01.31
  • Accepted : 2011.02.14
  • Published : 2011.04.30

Abstract

Rust causes significant losses in the yield and quality of various crops. The development of new effective and environmentally benign agents against the pathogen is of great interest. In the course of searching a natural antifungal compound from medicinal plants, we found that the methanol extract of Angelica gigas roots had a potent control efficacy against wheat leaf rust (WLR) caused by Puccinia recondita. The antifungal substance was isolated from the methanol extract by silica gel column chromatography, alumina column chromatography and $C_{18}$ preparative HPLC. It was identified as decursinol angelate by EI-MS and $^1H$-NMR data. In in vivo test, decursinol angelate effectively suppressed the development of WLR and red pepper anthracnose (RPA) among the 6 plant diseases tested. In addition, the wettable powder-type formulation of ethyl acetate extract of A. gigas roots significantly suppressed the development of WLR. The crude extract containing decursinol angelate and the chemical appear to be a potential candidate for control of WLR. In addition, this is the first report on the in vivo antifungal activity of decursinol angelate against WLR as well as RPA.

녹병은 다양한 작물의 품질과 수확량에 큰 영향을 끼친다. 따라서 이들을 방제하기 위하여 효과적이고 환경친화적인 살균제의 개발이 절실하다. 본 연구에서는 한약재로부터 항균 물질을 탐색하는 과정에서, 당귀 메탄올 추출물이 Puccinia recondita에 의해 발생하는 밀 붉은녹병에 대하여 우수한 방제효과를 나타내는 것을 확인하였다. 밀 붉은녹병에 대하여 활성을 보이는 한 개의 항균물질을 silica gel chromatography, alumina column chromatography와 $C_{18}$ preparative HPLC를 통해 분리, 정제하였다. 분리한 항균물질은 EI-MS와 $^1H$-NMR의 기기 분석 결과 decursinol angelate로 동정되었다. 이 물질은 시험한 6개의 식물병 중에서 밀 붉은녹병과 고추 탄저병에 대하여 우수한 항균활성을 보였다. 또한, 당귀의 에틸아세테이트 추출물의 수화제도 밀 붉은녹병에 대해 우수한 항균활성이 보였다. 따라서 decursinol angelate와 이를 포함한 당귀 추출물을 이용할 경우 밀 붉은녹병을 방제할 수 있는 새로운 살균제의 개발이 가능하리라 생각된다. 본 논문에서 decursinol angelate에 의한 밀 붉은녹병 방제 효과를 처음 보고하는 바이다.

Keywords

References

  1. 오윤정, 이수한, 정승원, 노완섭. 2006. 당귀가 유산균의 생육에 미치는 영향. 동아시아식생활학회지 16: 344-348.
  2. 유시용, 김진철, 김영섭, 김흥태, 김성기, 최경자, 김정섭, 이선우, 허정희, 조광연. 2001. 당귀와 백지로부터 분리한 coumarin계 물질들의 식물병원균에 대한 항균활성. 농약과학회지 5: 26-35.
  3. 최은정, 김향숙. 2006. 당귀와 승검초의 혼합 비율에 따른 혼돈병(餠)의 기호. 한국조리과학회지 22: 88-95.
  4. Abiko, K., Kishi, K. and Yoshioko, A. 1977. Occurrence of oxycarboxin-tolerant isolates of Puccinia horiana P. Hennings in Japan. Ann. Phytopathol. Soc. Jpn. 43: 145-150. https://doi.org/10.3186/jjphytopath.43.145
  5. Bae, E. A., Han, M. J., Kim, N. J. and Kim, D. H. 1998. Anti-Helicobacter pylori activity of herbal medicines. Biol. Pharm. Bull. 21: 990-992. https://doi.org/10.1248/bpb.21.990
  6. Chi, H. J. and Kim, H. S. 1970. Studies on the components of Umbelliferae plants in Korea: pharmacological study of decursin, decursinol and nodakenin. Kor. J. Pharmacogn. 1: 25-32.
  7. Choi, N. H., Choi, G. J., Min, B.-S., Jang, K. S., Choi, Y. H., Park,M. S., Choi, J. E., Bae, K. and Kim, J.-C. 2009. Effects of neolignans from the stem bark of Magnolia obovata on plant pathogenic fungi. J. Appl. Microbiol. 106: 2057-2063.
  8. Copping, L. G. and Menn, J. J. 2000. Biopesticides: a review of their action, applications and efficacy. Pest Manag. Sci. 56: 651-676. https://doi.org/10.1002/1526-4998(200008)56:8<651::AID-PS201>3.0.CO;2-U
  9. Dik, A. J. and Van Der Staay, M. 1995. The effect of Milsana on cucumber powdery mildew under Dutch conditions. Med. Fac. Landbouw. Univ. Gent 59: 1027-1034.
  10. Ganbaatar, Z., Gantumur, B., Osadchii, S. A., Shul'ts, E. E., Shakirov, M. M. and Tolstikov, G. A. 2008. Plant coumarins. 3.(+)-PTeryxin from Peucedanum terebinthaceum. Chem. Nat. Co. 44: 578-581. https://doi.org/10.1007/s10600-008-9144-6
  11. Hata, K. and Sano, K. 1996. The constitution of decursin, a new coumarin isolated from the root of Angelica decursiva FR. et SAV. (umbelliferae). Tetrahedron Lett. 14: 1461-1465.
  12. James, C. 1971. A Manual of Assessment Keys for Plant Disease.Canadian Department of Agriculture Publishing.
  13. Kang, S. Y. and Kim, Y. C. 2007. Neuroprotective coumarins from the root of Angelica gigas: Structure-activity relationships. Arch. Pharm. Res. 30: 1368-1373. https://doi.org/10.1007/BF02977358
  14. Katan, T. 1982. Resistance to 3, 5-dichlorophenyl-N-cyclicimide (dicarboximide) fungicides in the grey mould pathogen Botrytis cinerea in protected crops. Plant Pathol. 31: 133-141. https://doi.org/10.1111/j.1365-3059.1982.tb02821.x
  15. Konoshima, M., Chi, H. J. and Hata, K. 1968. Coumarins from the root of Angelica gigas Nakai. Chem. Pharm. Bull. 16:1139-1140. https://doi.org/10.1248/cpb.16.1139
  16. Lee, S., Lee, Y. S., Jung, S. H., Shin, K. H., Kim, B.-K. and Kang, S. S. 2003a. Anti-tumor activities of ducursinol angelate and decursin from Angelica gigas. Arch. Pharm. Res. 26: 727-730. https://doi.org/10.1007/BF02976682
  17. Lee, S., Shin, D. S., Kim, J. S., Oh, K. B. and Kang, S. S. 2003b. Antibacterial coumarins from Angelica gigas. Arch. Pharm. Res. 26: 449-452. https://doi.org/10.1007/BF02976860
  18. Lee, Y. Y., Lee, S., Jin, J. L. and Yun-Choi, H. S. 2003c. Platelet anti-aggregatory effects of coumarins from the roots of Angelica genuflexa and A. gigas. Arch. Pharm. Res. 26: 723-726. https://doi.org/10.1007/BF02976681
  19. Ng, T. B., Ling, J. M. L., Wang, Z. T., Cai, J. N. and Xu, G. J. 1996. Examination of coumarins, flavonoid and polysaccharopeptide for antibacterial activity. Gen. Pharmacogn. 27: 1237-1240. https://doi.org/10.1016/0306-3623(95)02143-4
  20. Rehman, S. U., Chohan, Z. H., Gulnaz, F. and Supuran, C. T. 2005. In-vitro antibacterial, antifungal and cytotoxic activities of some coumarins and their metal complexes. J. Enzyme Inhib. Med. Chem. 20: 333-340. https://doi.org/10.1080/14756360500141911
  21. Ryu, K. S., Hong, N. D., Kim, N. J. and Kong, Y. Y. 1990. Studies on the coumarin constituents of the root of Angelica gigas Nakai. Isolation of decursinol angelate and assay of decursinol angelate and decursin. Kor. J. Pharmacogn. 21: 64-68.
  22. Shukla, R., Kumar, A., Singh, P. and Dubey, N. K. 2009. Efficacy of Lippia alba (Mill.) Brown essential oil and its monoterpene aldehyde constituents against fungi isolated from some edible legume seeds and aflatoxin B1 production. Int. J. Food Microbiol. 135: 165-170. https://doi.org/10.1016/j.ijfoodmicro.2009.08.002
  23. Soylu, E. M., Kurt, S. and Soylu, S. 2010. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int. J. Food Microbiol. 143: 183-189. https://doi.org/10.1016/j.ijfoodmicro.2010.08.015
  24. Staub, T. 1991. Fungicide resistance; practical experience with antiresistance strategies and the role of integrated use. Annu. Rev. Phytopathogl. 29: 421-442. https://doi.org/10.1146/annurev.py.29.090191.002225
  25. Yoo, H. H., Lee, M. W., Kim, Y. C., Yun, C. H. and Kim, D. H. 2007. Mechanism-based inactivation of cytochrome P450 2A6 by decursinol angelate isolated from Angelica gigas. Drug Metab. Dispos. 35: 1759-1765. https://doi.org/10.1124/dmd.107.016584
  26. Yoon, M.-Y., Choi, G. J., Choi, Y. H., Jang, K. S., Par, M. S., Cha, B. and Kim, J.-C. 2010. Effect of polyacetylenic acids from Prunella vulgaris on various plant pathogens. Lett. Appl. Microbiol. 51: 511-517. https://doi.org/10.1111/j.1472-765X.2010.02922.x
  27. Yun, H. Y., Kim, Y. H., Hong, S. G. and Lee, K. J. 2007. First description of Coleosporium plectranthi causing perilla rust in Korea. Plant Pathol. J. 23: 7-12. https://doi.org/10.5423/PPJ.2007.23.1.007

Cited by

  1. Antifungal Activity of Crude Extract Compound from Rhus verniciflua Against Anthracnose Fungi (Collectotrichum spp.) of Red-Pepper vol.31, pp.1, 2012, https://doi.org/10.5338/KJEA.2012.31.1.60
  2. Screening of Antifungal Activities of Medicinal Plants for the Control of Turfgrass Fungal Disease vol.2, pp.1, 2013, https://doi.org/10.5660/WTS.2013.2.1.070
  3. ) in persimmon trees pp.2165-0616, 2019, https://doi.org/10.1080/01448765.2018.1526711
  4. Inhibiting Anthracnose Pathogen Growth and Disease Occurrence by Crude Extracts from Medicinal Plants in Jujube (Zizyphus jujuba Miller) vol.30, pp.2, 2018, https://doi.org/10.12719/KSIA.2018.30.2.125