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Abstract

The nonlinear free-surface motions interacting with a floating body were investigated using the Moving Particle
Semi-implicit (MPS) method proposed by Koshizuka and Oka [6] for incompressible flow. In the numerical me-
thod, more realistic Lagrangian moving particles were used for solving the flow field instead of the Eulerian ap-
proach with a grid system. Therefore, the convection terms and time derivatives in the Navier-Stokes equation can
be calculated more directly, without any numerical diffusion, instabilities, or topological failure. The MPS method
was applied to a numerical simulation of predicting the efficiency of floating-type breakwater interacting with

waves.
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1. Introduction

In order to efficiently utilize the coastal area, vari-
ous kinds of breakwater should be studied and devel-
oped. Although fixed breakwaters have excellent per-
formance onshore, they are associated with economi-
cal and technical problems in their construction off-
shore, as well as environmental by restricting the cir-
culation of seawater. However, floating-type breakwa-

ters have many advantages compared to fixed ones, i.e.

flexibility of future extensions, mobility, preservation
of environments and economical efficiency, etc. As a
result, a few investigations have proposed to improve
the performance of floating breakwaters [1, 2, 3, 5, 8,
11, 12, 14]. Of these, most numerical approaches relat-
ing to floating breakwaters have focused on develop-
ing numerical techniques that capture the fully nonli-
near free-surface motion based on a grid system.
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However, there are many different approaches that do
not employ a grid system; for example, the so-called
particle methods with a fully Lagrangian treatment [6,
10]. The particle methods seem to be more feasible
and effective than conventional grid methods for solv-
ing the flow fields associated with complicated boun-
dary shapes or coupling effects between a fluid and
structure.

In the present study, the efficiency of a floating-type
breakwater interacting with waves was investigated
numerically, using the Moving Particle Simulation
(MPS) method supposed by Koshizuka and Oka [6]
for an incompressible flow. In this method, more
realistic Lagrangian moving particles were used for
solving the flow field rather than an Eulerian approach
with a grid system. Therefore, the convection terms
and time derivatives in the Navier-Stokes equation can
directly be calculated, without any numerical diffusion,
instability or topological failure. The method consisted
of particle interaction models to represent the gradient,
diffusion, incompressibility and free-surface boundary
conditions.
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2. Moving particle simulation

2.1 Governing function

The governing equations for incompressible visc-
ous flows are the continuity and Navier-Stokes equa-
tions, as follows:
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where p is the density, t the time, u the veloci-
ty vector, V the gradient, P the pressure, v the

kinematic viscosity and F the external force.

The left-hand side of the Navier-Stokes equation
(2) denotes a Lagrangian differentiation, which is
directly calculated by moving particles in a Lagran-
gian manner. The right-hand side consists of the pres-
sure gradient, viscous and external force terms. To
simulate incompressible flows, all terms expressed by
differential operators should be replaced by the par-
ticle interaction models of the MPS method.

2.2 Kernel function

Continuous fluid can be represented by physical
quantities of coordinates, mass, velocity components
and pressure for particles. The governing equations
written with partial differentiations are transformed
to the equation for particle interactions. The particle
interactions in the MPS method are based on a kernel
function. In this study, the following function was
employed.
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where the distance between two particles is given by
r,and r, represents the effective range of the par-

ticle interactions. In Fig. 1, the kernel becomes zero
when r>r, . Since the area covered by this weight

function is bounded, a particle interacts with a finite
number of neighboring particles. The radius of the
area of interaction is determined by a parameter, ..

The weighting of an interaction between two particles
can be described by a kernel function, i.e. the nearer

the distance between two particles, the larger the
weight of the interaction. If the distance between two
particles is quite long, the weight of the interactions
can be neglected.

2.3 Gradient model

A gradient vector between two particles, i and
j » possessing scalar quantities, 4 and ¢, , at
coordinates, r, and r, , is simply defined by

(¢j—¢i)(rj—ri)/|rj—ri|z, as shown in Fig. 2. The

gradient vector at the particle i is given by the
weighted average of the gradient vectors:
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where d is the number of space dimensions, and
n® the particle number density, which is fixed for

incompressibility under the initial condition of the

particle arrangement. The particle number density is
calculated by the following equation.

= Zw(fr ) ©

i#]

The fluid density is proportional to the particle
number density.

2.4 Diffusion model

The diffusion of ¢ at the particle i is described
by
2, 2d 6
Vo= (4= d)w(lr ) ©
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where A is a parameter where the increase in the
variance is equal to that of the analytical solution.

The diffusion can be modeled by the distribution
of a physical value from a particle to its neighboring
particles using the kernel function (Fig. 3). The mod-
el is conservative, since the quantity lost by the par-
ticle, i, is only obtained by the neighboring particles,

).
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Fig. 1 Kernel function.

Fig. 3 Diffusion model.

2.5 Incompressibility model

The fluid density is represented by the particle
number density. Thus, the continuity equation (1) is
fulfilled by fixing the particle number density via
simulation. This means that the particle number den-
sity, n°, should be constant.

The algorithm for incompressibility in the MPS
method is similar to that in the SMAC (Simplified
Marker-and-Cell) method with a grid system. There
are two stages in each time step: in the first stage, the
temporal velocity components and coordinates of the

particle i are obtained using diffusion, external
forces and convection terms, which are explicitly
calculated with the values in the (n)-th time step.
Thus the temporal coordinates 7~ of the particle i

can be written using the temporal velocity ui , as
follows:

I =1"+ At ®)

In equation (8), the convective term can be simply
calculated via the moving particles according to the

temporal velocity components, Ui . Due to the
movement of particles in the explicit first stage, the
particle number densities might be changed, i.e.
n“=n°.

In the second stage, the temporal particle number
densities, n’ , are calculated from the temporal

coordinates, r: . The Poisson equation for a pressure
is calculated implicitly [6]:
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The right hand side of equation (9) represents the
deviation of the temporal particle number density
from a constant value. The role of the right hand side
in equation (9) maintains the particle number densi-
ties during the simulation. The left hand side of equa-
tion (9) is discretized by the diffusion model (6). Fi-
nally, simultaneous equations expressed by a linear
symmetric matrix are obtained, which are solved
using an iteration method. In the present study, the
CG (Conjugate Gradient) method was employed as
the iterative solver.

Fig. 4 shows the algorithm procedure for the
present method. After updating the pressure field, the

velocity correction Ui is calculated by the following
equation:

0 = -2 (vpm) (10)

Finally, the velocity components and coordinates
of particles in the (n+1)-th time step are calculated
from the following equations:

Gt =0+ 0 (11)

F" =+ AL (12)
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2.6 Boundary condition

As the free-surface boundary condition, the kine-
matic and dynamic boundary conditions are imposed.
The kinematic condition can be directly satisfied by
moving particles on the free-surface. In the present
method, it was straightforward to track the free-
surface particles, because the location of the free-
surface was easily obtained as a result of the fully
Lagrangian treatment of the particles.

As shown in Fig. 5, in the vicinity of the free-
surface, the particle number densities were decreased,
as the empty air region, where no particles exist in the
case of single-phase problem, was included. Thus, the
particles satisfying the following simple condition
were considered on the free surface.

(n). < pn° (13)

where g is a parameter below 1.0; £=0.97 was

selected in this study. Using this free-surface boun-
dary condition, the simulation of fragmentation and
coalescence of a fluid is available. The free-surface
parameter, S, was used to judge whether the par-
ticles were on the free-surface.

Conversely, the dynamic condition can be satisfied
by taking the atmospheric pressure (P =P,, =0) on
the free-surface particles. This condition was fulfilled
in the procedure of solving the Poisson equation (9).

For the wall boundary condition, as shown in Fig. 6,
the wall particles were set according to the solid
boundary, with dummy particles inside the solid wall.
In the particle method, it is important to obtain useful
information on the physical quantities from the
neighboring particles. The physical quantities were
calculated by the interaction with neighboring par-
ticles. The wall particles will be directly in contact
with both the fluid and dummy particles, which are
involved in the pressure correction calculation and
prevent the concentration of particles near the wall.
They also have zero velocities when the walls are
treated as non-slip. The dummy particles contain ve-
locity components, which are installed in the same
way as the dummy cells in grid methods. Three layers
of particles are located to ensure that the particle
number density is accurately computed.

2.7 Treatment of passively moving solid model

In this section, two numerical treatments have been
introduced for solving the motion of a floating body;

one being the conventional method using the equation
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Fig. 6 Wall boundary condition.

of motion, and the other is the passively moving-solid
model suggested by Koshizuka and Oka [6], which
describes the motion of a rigid body in a fluid.
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Sueyoshi [13] proposed another method, which
solves the equation of motion explicitly, to determine
the motion of a rigid body in a fluid. The force and
moment acting on the surface of a rigid body are di-
rectly calculated by the integration of the pressure on
its surface, as shown in Fig. 7. The equation of mo-
tion for a floating body in 2-dimension can be calcu-
lated through the translation and rotational angles of
a floating body.

o, .
S (14)
2
LD NiK
dt (15)

Here, M is mass of the solid, T, the center of
gravity, @ the rotational angle for rotational axis,
I,, the moment of inertia for rotational axis and k
the unit vector normal to the 2-dimensional plane.
The hydrodynamic force, F, and moment, M ,
affect the translational and rotational motions, re-
spectively, and are calculated via:
on the hull surface

= > PAds

! (16)

on the hull surface

M= Y (F-f)xPids,

! A7)

T

Here, N, and dS, are the normal vector and the

local area of a particle on the surface of a rigid
body, respectively.

Conversely, Koshizuka and Oka [6] proposed a
passively moving-solid model to describe the mo-
tion of a rigid body in a fluid. Here, a solid is as-
sumed to be a collection of particles held together
by intermolecular forces. The solid particles are
initially calculated using the same incompressible
algorithm as for fluid particles. At this stage, the
coupling effect between the individual solid par-
ticles is not considered. As a result of the simula-
tion, at this stage the solid deforms; therefore the
relative locations of the solid particles should be
corrected using the equations (18)~(23).

At the center of a rigid body, the translational ve-
locity, T, and rotational velocity, R, are calcu-
lated as given in the following equations:

l])i
i=1 (]_8)

T=

=

ﬁzl U x G
I =

(19)

Here, the relative coordinates between solid par-
ticles, G;, and the moment of inertia, | , are given

as:

‘ (20)

= 1)

Here, T, is the center of gravity, which is calcu-
lated as follows:

=2
= (22)

Finally, the velocity vector of the solid particles
was replaced by:

Ui=f+qi><§ (23)

In the next time step, the fluid particles are
slightly affected by this solid motion via an incom-
pressibility calculation.

Free-surface
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\
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Fig. 7 Schematic of motion equation for 2D floating body simu-
lation.
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Fig. 8 Initial configuration of 2D floating body simulation.
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Fig. 9 Floating body motion of coupled with free-surface motion.

Here, the amplitude A, and period T of the

3. Numerical simulation and discussions movement were 0.01m and 1.0sec, respectively.

3.1 Floating-body simulation

To verify the simulation of a floating body with
free-surface, the motions of a 2D floating rectangular
barge, in an oscillating water-filled (density=1000
kg/m®) tank, are simulated in the time domain using
both the equation of motion and the passively mov-
ing-solid model.

The initial geometry and set-up are shown in Fig.
9. The height and width of the tank were 1.0 and
0.7m, respectively. The top of the tank was opened
and the water depth was 0.3m. The floating body’s
height and width were 0.1 and 0.3m, respectively.
The body was initially positioned in the center of the
tank. The specific gravity and density of the body
were 0.5 and 500kg/m?, respectively. The initial dis-

tance between particles, l , was 0.01m, with the
total number of particles being 4,000. The movement
of the tank followed a sinusoidal function (Eq. 24);
therefore, a harmonic flow field was created in the
tank.

At) = Aysin(2zt/T) (24)

Fig. 9 shows snap-shots of the simulated results
for the motion of the floating body interacting with a
free-surface. Fig.10 (a) shows the results on applica-
tion of the moving solid model; whereas, Fig.10 (b)
shows the results for the equation of motion; both
cases looked very similar.

Fig. 10 shows the corresponding time histories of
the roll motions of the floating body. Both results are
appeared to be very close to the anticipated period of
1sec. Due to the standing wave formed inside the
tank, the amplitudes were modulated. The slight dis-
crepancy between the two sets of results might have
been caused by the different algorithm and the non-
physical pressure fluctuation in the pressure integra-
tion used for the equation of motion. From this com-
parison, the use of the passively moving-solid model
was validated, which is a simpler algorithm and
computationally more economical compared to the
equation-of-motion method. For the ensuing exam-
ples shown in this paper, the passively moving solid
model was employed to calculate the motion of a
floating body.
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Fig. 10 Time history of roll angle of floating body.

3.2 Numerical prediction on performance of float-
ing-type breakwater

The numerical predictions on the performance of a
floating-type breakwater were performed. The initial
geometry for the simulation is illustrated in Fig.11.
The floating breakwater, fixed by a hinge to the bot-
tom, was located in 2.0m left from the piston-type
wavemaker. The wave absorber was located to the
right of the floating breakwater to absorb the wave
made by the wavemaker. The viscous effects and sur-
face tension were disregarded in this simulation. The
floating breakwater was assumed to be rigid and
composed of solid particles. The total simulation time
was 20.0sec.

When the wave generated by the wavemaker had
fully developed, the performance of the floating
breakwater was computed. The movement of the pis-
ton-type wave-maker follows a sinusoidal function
(24).

The period and length of the generated waves by
oscillating wave-maker are shown in Table 1. The
generated wave height was 0.2m with low and high
tide levels of 0.82 and 0.2m, respectively. The total
number of particles used for the simulation is about
25000. The densities of the floating breakwater and
water were 500 and 1000kg/m®, respectively. The
time increments were varied under the Courant’s sta-
bility condition.

The wave height and length according to the time
increments were measured at 5.0m from the wave-
maker, without a floating breakwater. The numerical
prediction on the performance of the floating break-
water was performed after the wave conditions of the
simulated results, without a floating body, were com-

pared with the simulated conditions shown in Table 1.
The performance of the breakwater at low and high
tide levels were calculated via the measurement of the
wave height at 4.0 and 6.0m from the wavemaker.
The transmissivity can be defined as:

Output wave height 100 (25)

Transmissivity (%) = -
Input wave height

where the initial wave elevation without a body con-
dition was considered .

Table 1 Principal parameter for wavemaker.

Model Type
Prototype
Low Tide High Tide
. Wave . Wave . Wave
Fzgg(; Length I[Dgggc; Length [ngg? Length
[m] [m] [m]

4.0 2498 | 1285 | 2498 | 1272 | 2498
45 3162 | 1479 | 3162 | 1446 | 3.162
5.0 39.03 | 1.698 | 3.903 | 1.638 | 3.903

Unit—mm|

R NG |} el
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Fig. 11 Schematic of set up for breakwater.
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Fig. 13 Transmission rate of floating breakwater according to
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(a) Low tide level
Fig.12 Free-surface deformation and motion of floating breakwater interacting with waves (Period=4.5sec, Wave length
=31.62m).

Fig. 12 shows the free-surface deformation and
motion of the floating breakwater interacting with
waves. In the case of the low tide level, the breakwa-
ter was inclined to the advancing direction of the
waves. In the case of the high tide level; however, the
breakwater was moved elliptically, based on its initial
position.

Fig. 13 depicts the wave transmissivity as a func-
tion of the wave period. The wave transmissivity of
the floating breakwater was indicated to be higher, at
around a period=4.5sec, and was more effected at the
low than high tide level.

4. Conclusions

The prediction of the performance of a floating-
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(b) High tide level

type breakwater was investigated numerically using
the MPS method proposed by Koshizuka and Oka [6]
for an incompressible flow.

From the simulated results, the present method ap-
peared to be applicable to the complicated wave mo-
tions interacting with a floating body and for the pre-
diction of the transmission coefficients of a floating
breakwater with moored lines.
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