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Abstract 
 
The depth and heading control of an autonomous underwater vehicle (AUV) are considered to follow the prede-

termined depth and heading angle. The proposed control algorithm was based on a sliding mode control, using 
estimated hydrodynamic coefficients. The hydrodynamic coefficients were estimated employing conventional 
nonlinear observer techniques, such as sliding mode observer and extended Kalman filter. Using the estimated 
coefficients, a sliding mode controller was constructed for a combined diving and steering maneuver. The simu-
lated results of the proposed control system were compared with those of a control system that employed true 
coefficients. This paper demonstrated the proposed control system, and discusses the mechanisms that make the 
system stable and accurately follow the desired depth and heading angle in the presence of parameter uncertainty. 
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1. Introduction 

In recent years, intensive efforts have focused on 
the development of autonomous underwater ve-
hicles (AUVs). In order to design an AUV, it is 
usually necessary to analyze its maneuverability 
and controllability based on a mathematical model. 
The mathematical model for most 6 DOF (degrees 
of freedom) contains hydrodynamic forces and 
moments expressed in terms of a set of hydrody-
namic coefficients. Therefore, in order to correctly 
simulate the performance of an AUV, it is impor-
tant to know the true values of these coefficients. 

The hydrodynamic coefficients constitute the 
heart of the primary mathematical model used in 
simulation studies of the rigid-body motions of 

AUVs. These coeffici`ents are usually considered 
to be constant and independent of vehicle motion 
parameters. A number of mathematical models 
have been developed, particularly for AUVs, where 
the number and type of hydrodynamic coefficients 
differ, depending on the modeling of the forces and 
moments, e.g. the quadratic form, the cubic form 
and the combined quadratic-cubic form, of the 
damping forces and moments. The various hydro-
dynamic coefficients that are used in the dynamic 
equations of motion may be classified into 3 types, 
these being the added mass coefficients, due to the 
inertia of the surrounding fluid, and the li-
near/nonlinear damping coefficients, which result 
from fluid viscosity effects; of which, the linear 
damping coefficients have the largest affect on the 
maneuverability of an AUV [1]. Sen [1] examined 
the influence of various hydrodynamic coefficients 
on the predicted quality of maneuverability of sub-
merged bodies, and found that the coefficients with 
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significant effects on the trajectories were the linear 
damping coefficients. 

These coefficients are normally obtained experi-
mentally test, numerical analysis or empirical for-
mulae. Although the planar motion mechanism 
(PMM) test is the most popular among experimen-
tal test, the measured values are not completely 
reliable due to experimental difficulties and errors. 

Another approach is the observer method, which 
estimates the hydrodynamic coefficients with the 
help of a model-based estimation algorithm. A rep-
resentative observer method is the Kalman filter, 
which has been widely used in the estimation of 
hydrodynamic coefficients and state variables. 
Hwang [2], Kim [3], and Yoon [4] estimated the 
maneuvering coefficients of a ship, and identified 
the dynamic system of a maneuvering ship, using 
an extended Kalman filtering technique. 

These estimated coefficients are not only used in 
the mathematical model to analyze an AUV’s ma-
neuvering performance, but also in a controller 
model to design an AUV’s autopilot. Fossen and 
Blanke [5] designed a propeller shaft speed control-
ler by using feedback from the axial water velocity 
in the propeller disc. Farrell and Clauberg [6] re-
ported the successful control of a Sea Squirt vehicle, 
which used an extended Kalman filter as a parame-
ter estimator, with pole placement, to design the 
controller. Yuh [7] described a functional form of 
the vehicle dynamic equations of motion, the nature 
of the loadings, and the use of adaptive control via 
online parameter identification. 

Recently, advanced control techniques have been 
developed for AUVs, with the aim of improving the 
capability to track the desired position and attitude 
trajectories. In particularly, the sliding mode control 
has been successfully applied to AUV due to its 
good robustness for modeling uncertainty, variation 
under different operating conditions, and distur-
bance. Yoerger and Slotine [8] proposed a series of 
SISO continuous-time controllers by using the slid-
ing mode technique on an underwater vehicle, and 
demonstrated the robustness of their control system 
via a computer simulation in the presence of para-
meter uncertainties. Cristi et al. [9] proposed an 
adaptive sliding mode controller for AUVs, based 
on the dominant linear model and the bounds of the 
nonlinear dynamic perturbations. Healey and Lie-
nard [10] and Sur and Seo [11] described a 6 DOF 
model for the maneuvering of an underwater ve-

hicle, and designed a sliding mode autopilot for the 
combined steering, diving, and speed control func-
tions. Lea et al. [12] compared the performance of a 
root locus, fuzzy logic, and sliding mode control, 
which they tested using an experimental vehicle. 
Lee et al. [13] designed a quasi-sliding mode con-
troller for an AUV in the presence of parameter 
uncertainties, with a long sampling interval. 

In this paper, the depth and heading control of an 
AUV are presented in order to maintain the desired 
depth and heading angle in a towing tank. The pro-
posed control algorithm represents a sliding mode 
control, using estimated hydrodynamic coefficients. 
The hydrodynamic coefficients were estimated, 
based on the nonlinear observer such as sliding 
mode observer (SMO) and extended Kalman filter 
(EKF). Because the system to be controlled is high-
ly nonlinear, a sliding mode control is constructed 
to compensate for the effects of modeling nonli-
nearity, parameter uncertainty, and disturbance. 

This paper is organized as follows: Section 2 de-
scribes the nonlinear observers for estimating the 
hydrodynamic coefficients. Section 3 presents a 
sliding mode control for the depth and heading con-
trol. Section 4 shows the simulated results. Finally, 
section 5 presents the conclusions of the MUUTV. 

 

2. Estimation of the hydrodynamic coefficients 

The coefficients with the most significant effects 
on the dynamic performance of an AUV were 
found to be the linear damping coefficients. In par-
ticular, twelve of the linear damping coefficients 
were considered as highly sensitive parameters, 
which have previously be represented in Sen [1] as 
Mq, Mds, Nr, Ndr, Nv, Zds, Zq, Ydr, Yr, Yv, Kp and Kr. 

In this paper, in order to estimate the sensitive 
coefficients, an estimated system based on a nonli-
near observer was constructed, as illustrated in Fig. 
1. The nonlinear observer block was composed of 
SMO and EKF, which are designed based on the 
AUV’s 6 DOF equations of motion. Based on the 
measured signal of the AUV’s motion, two nonli-
near observers were developed for estimating the 
sensitive coefficients. The AUV block represents 
the real plant and includes a 6 DOF model of an 
NPS AUV II [10]. The value of the sensitive coeffi-
cients from this block was used as the true value 
and compared with those estimated. 
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In nonlinear observers, 6 DOF AUV equations of 
motion, and the augmented states for the linear 
damping coefficients, are included. Thus, the ob-
server model describes the surge, sway, heave, and 
roll, pitch and yaw motions. The coordinate system 
is shown in Fig. 2. The 6 DOF equations of motion 
for the observer design were as follows [14]: 
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where u, v and w are the velocities of the surge, 
sway and heave motion, and p, q and r the angular 
velocities of the roll, pitch, and yaw motion, respec-
tively. X, Y, Z, K, M and N represent the resultant 
forces and moments with respect to the x, y and z 
axes, respectively; their detailed expressions and 
nomenclatures have previously been described in 
[14]. In order to estimate the linear damping coeffi-
cients, they have to be modeled as extra state va-
riables. Consequently, Eq. (1), the 6 DOF equations 
of motion, is transformed into an augmented state-
space form as follows: 
 

Fig. 1.  Configuration of the estimate system 

 
Fig. 2. Coordinate system 
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where 21 21M R   is the inertia matrix, with a hy-
drodynamic added mass, and the extra state 

21 1R  , denotes the linear damping coefficients. 
The  ,   and   are the angles of roll, pitch 
and yaw respectively. Xe, Ye, Ze, Ke, Me and Ne 
represent the external forces and moments, except 
the added mass term. Xm, Ym, Zm, Km, Mm, and Nm 
stand for the components of the inertial terms trans-
posed from the left hand-side of Eq. (1). Especially, 
the added mass coefficients and the nonlinear 
damping coefficients in Eq. (2) were taken from the 
NPS AUV II [10] as known values. Therefore, non-
linear observers were designed based on Eq. (2). 
 

2.1 Sliding mode observer (SMO) 

The SMO, which was developed on the basis of 
the sliding surface concept, can set the gain value 
according to a uncertainty range of the plant model. 
The SMO is known to be robust under parameter 
uncertainty and disturbance. In addition, it can be 
easily applied to a nonlinear system [15]. In general, 
a nonlinear system may be represented by: 
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Cxy

txfx



 ),(

                            (3)  
 
where nx R  is the state vector, my R  the mea-
surement vector, the true plant and m nC R   the 
measurement matrix. The measurement is assumed 
to be a linear combination of the state, with the 
inputs contained in  ,f x t . If we define a sliding 
surface is defined as the error y , 
 

 xxCyyys  ˆˆ~
                  (4) 

 

the sliding surface will then converge to zero when 
it satisfies the Lyapunov stability, as follows: 
 

0~~  yyss                              (5) 

 

Eq. (5) is referred to as the sliding condition. If Eq. (5) 
is satisfied, the sliding 0s   is guaranteed and the 
error y  tends toward zero. In order to satisfy the 
sliding condition, the SMO is given by: 
 

  )~tanh(,ˆˆ  yLtxfx                  (6) 
 

where L  is the nonlinear gain matrix to be deter-
mined and tanh( )y  represents the switching 
term, which uses the ‘tanh’ function, instead of 
‘sign’ function.   is the boundary layer thick-
ness, which acts as a low-pass filter to remove chat-
tering and noise. From Eq. (3) and Eq. (6), the error 
dynamics are given by: 
 

)~tanh(),~(
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           (7) 

where ( , )f x t  is the modeled plant. The value of 
( , )f x t depends both on the modeling complexity 

and the magnitude of the error. Using the error dy-
namics, Eq. (7), the sliding condition is as follows: 
 

0))~tanh((~~~~~  yLfCyxCyyy 
    (8) 

 

To satisfy Eq. (8), given bounds on f , the nonli-
near gain, L , is chosen by: 

)~1(,),~( pitxfL ii 
              (9) 

Here iL  is the pth order nonlinear gain. In addi-
tion, during sliding, namely when the sliding sur-
face goes to zero, the switching term can be written 
from Eq. (8): 
 

  fCCLy  1)~tanh(                   (10) 

 

From Eq. (10), the error dynamics, Eq. (7), is de-
veloped by: 

   fCCLLIx  1~
                   (11) 

where I  implies the identity matrix. Therefore, 
the system dynamics are reduced from the nth to 
the n-pth order during sliding. The above Eq. (11) 

has the form of x ax  ; therefore, the nonlinear 
gain matrix L  is chosen, such that has a negative 
eigenvalue. In order to estimate the hydrodynamic 
coefficients, the SMO was designed using the ob-
server model Eq. (2). The state variable yields x = 
[ u v w p q r    qM dsM rN drN vN dsZ qZ drY

rY vY  Kp Kr]
T. The output variables were chosen as 

y = [ u v w p q r    ]T. 

 

2.2 Extended kalman filter (EKF) 

The EKF can optimally estimate the state va-
riables in nonlinear stochastic cases, which include 
plant perturbation and sensor noise. In particular, 
unknown inputs or parameters can be estimated by 
their conversion to extra state variables [16]. As-
suming a system containing unknown parameters is 
given as follows: 
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                  (12) 
 
where nx R  is the state vector, my R  the mea-
surement vector, pR   the unknown parameter 
vector, w  the plant disturbance, and v  is the 
sensor noise. In order to estimate the unknown pa-
rameters, the state variable, x , is augmented by 
the unknown parameters. Therefore, Eq. (12) can be 
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expressed in an augmented state-space form as fol-
lows: 
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where nw R , pR   and mv R  are zero-
mean Gaussian white noise sequences and 

n px R   is the augmented state vector. For this 
system, the discrete time EKF is summarized as 
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Measurement update: 
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P is the error covariance and Q  the process noise 
covariance. The gain matrix, K , is determined 
from the Riccati equation, and the measurement 
noise covariance, R , is determined by satisfying 
the Lyapunov function of error [17]. P  and Q  
are determined by scaling the fixed magnitude [18]. 
Time updates, Eq. (14) and Eq. (15) represent the 
extrapolation by the state transition matrix and 
measurement updates Eq. (16), Eq. (17) and Eq. 
(18) reflect the actual measurement process due to 
optimal gain . 

To estimate the hydrodynamic coefficients, the 
EKF was designed using the observer model of Eq. 
(2). The 12 linear damping coefficients, which are 
represented by, are estimated using Eq. (14) - (18). 
The state and output variables were equal to those 
of the SMO. 
 

2.3 Estimation results 

In order to estimate the twelve sensitive coeffi-
cients associated with the horizontal and vertical 
motions, a simulation was conducted for the com-
bined diving and steering motion of the AUV. The 
sensitive coefficients from the AUV block in Fig. 1 
were used as true values and compared with those 
estimated. The performances of the SMO and the 
EKF estimation were compared when the AUV 
underwent combined diving and steering. The mo-
tion scenario was as follows: the AUV has the ini-
tial speed of 1.8m/sec, with a rudder/ elevator angle 
applied to 20˚ from the start. The rudder and eleva-
tor work within -23˚ to 23˚. Fig. 3 shows the rud-
der/elevator angles, the velocities and the 3-D tra-
jectory of the motion scenario. 

 
Table 1. Steady-state error (%) 

SMO EKF 

Mq 1.10 0.12 

Mds 1.46 0.26 

Nr 24.67 0.33 

Ndr 17.78 0.58 

Nv 30.35 0.13 

Zds 3.07 0.05 

Zq 2.48 0.09 

Ydr 49.34 14.53 

Yr 102.57 9.61 

Yv 44.22 23.29

Kp 0.09 0.14 

Kr 5.28 0.01 

 
Figs. 4 - 8 compare the results estimation via the 

SMO and EKF for the twelve sensitive coefficients. 
The steady-state error has been compared in Table 
1. In the figures, a thick solid line represents the 
true value adopted from [10], and the dashed/solid 
line those of the SMO/EKF results. In general, the 
EKF exhibited a good estimation performance, but 
Ydr, Yr and Yv, which are associated with sway mo-
tion, contained steady-state errors. The SMO is well 
known to be a robust observer under parameter 
uncertainty and disturbance, but has large steady-
state errors and fluctuations during the transient 
period. Based on a series of simulations, the EKF 
was concluded to estimate the sensitive coefficients 
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with sufficient accuracies. Although the nonlinear 
observers were used off-line in order to analyze 
system identification, they can be implemented on-
line to estimate the state variables and control of an 
AUV. 

In this paper, nonlinear observers for estimating 
the hydrodynamic coefficients exhibited a good 
performance as the input data for the observer were 
taken from the simulated results of the NPS AUV 
II. However, the estimated coefficients were ex-
pected to contain many when the input data are 
taken from sea trial results. The sea trial data can be 
contaminated with sensor noise and contain com-
plex terms due to coupled motion of an AUV. 

 
(a) steering and elevator angles 

 
(b) surge, sway, and heave velocities 

 
(c) 3-D trajectory 

Fig. 3. Inputs and outputs of motion scenario 
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Fig. 4. Pitch coefficients qM  and dsM  
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Fig. 5. Yaw coefficients rN , drN and vN  
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Fig. 6. Heave coefficients dsZ and qZ  
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Fig. 7. Sway coefficients drY , rY  and vY  
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Fig. 8. Sway coefficients Kp and Kr 
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3. Controller design 

Although an AUV system is difficult to control, 
due to high nonlinearity and motion coupling, slid-
ing mode control has been successfully applied to 
underwater vehicles. In this paper, a sliding mode 
control was adopted for an AUV with uncertainty in 
the system parameters. Particularly, when designing 
a sliding mode controller, the estimated hydrody-
namic coefficients in section 2 were applied to the 
controller model. 

The sliding mode control is well to provide an ef-
fective and robust way of controlling uncertainty in 
plants by means of a switching control law, which 
drives the plant’s state trajectory onto the sliding 
surface in the state space. With only a single control 
element active, each subsystem may be treated sep-
arately as a single input, multi-state system, with its 
own single sliding surface definition. Any system 
can be described as a single input, multi-state equa-
tion [10]. 
 

11 ,,)(

)()()()(
 


nnnn RbRARtx

tftbutAxtx 

             (19) 
 
where  f t  is a nonlinear function, which de-
scribes the disturbances and unmodelled coupling 
effects. The sliding surface is defined as: 
 

xsT ~                               (20) 
 
where sT represents the sliding surface coefficient 

and x~ the state error, i.e.  dx x x   . It is important 

that the sliding surface is defined such that as the 
sliding surface tends toward zero, and the state er-
ror also tends toward zero. The sliding surface 
reaches zero in a finite amount of time under the 
condition: 
 

)sgn(                            (21) 
 
where   represents the nonlinear switching gain. 
From Eq. (19) and Eq. (21), the following is ob-
tained: 
 

)sgn()(   d
T xfbuAxs 

    (22) 
 
and the control input determined as follows: 

)]sgn([)()( 11   
d

TTTTT xsfsbsAxsbsu   
(23) 
 

If the pair, ( ,  b)A , is controllable and (  b)Ts  is 

nonzero, then it may be shown that the sliding sur-
face coefficients are the elements of the left Eigen-
vector of the closed-loop dynamics matrix, 
(  - bk )TA , corresponding to a pole at the origin: 

 
0][  TT bkAs                         (24) 

 
where the linear gain vector, Tk , is defined as 

1( )T Ts b s A , which can be evaluated via a the stan-

dard method, such as pole placement. It should be 
mentioned that one of the Eigenvalues of 
( )TA bk  must be specified as being zero. The 

resulting sliding control law, using a ‘tanh’ func-
tion, is given as: 
 

)/tanh()()()( 111    bsxsbsfsbsxku TTTTTT   
(25) 

 
where   is the boundary layer thickness, which it 
acts as a low-pass filter to remove chattering and 
noise. The choices of the nonlinear switching gain, 
 , and the boundary layer thickness,  , are se-
lected to eliminate control chattering. 
 

3.1 Depth control 

In order to design a controller in the vertical plane, 
the linearized diving system dynamics were devel-
oped as follows: 
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In Eq. (26), the values of ˆ
qM  and ˆ

sM were taken 

as those estimated (EKF) in section 2. The dynamic 
model for the depth control yields the state equation 
as: 
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The sliding surface is defined as: 
 

Zqs

~~
37.14~18.28                     (28) 

 
where q ,  , and �Z  represent the errors asso-
ciated with the pitch rate, pitch angle, and depth, 
respectively. When the poles are placed at        
[0 -0.25 -0.26]. The depth control law is finally 
determined as: 
 

)4/tanh(3.21698.00062.03531.2 sds Zq   
 

(29) 
 
To implement the above depth control law, an AUV 
has to be equipped with the pitch rate, pitch angle 
and depth sensors. 

3.2 Heading control 

The linearized steering system dynamics are giv-
en as follows: 
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(30) 

In Eq. (30), the values of  ˆ ˆ ˆ ˆ ˆ,  Y ,  Y ,  N ,  Nv r r v rY   and 

ˆ
rN  were taken as those estimated (EKF). The 

dynamic model for heading control yields the state 
equation: 
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(31) 

The values for placement of the poles of the steer-
ing system at [0 -0.41 -0.42] become: 
 

 ~~65.1~15.0  rvr                    (32) 
 
where v , r  and �  denote the errors of sway 
velocity, yaw rate and yaw angle, respectively. The 
heading control law is as follows: 
 

)05.0/tanh(5.13465.41621.05260.0 rdr rv   
 

(33) 
In order to implement the above heading control 
law, it is necessary to measure the signals of lateral 
velocity, yaw rate and yaw angle. 
 

4. Simulation results 

Numerical simulations were performed to show 
the effectiveness of the proposed control system. 
The simulation program, which was developed 
using MATLAB 6.0, within the SIMULINK 4.0 
environment, is shown in Fig. 8. The controller 
block was composed of a sliding mode controller 
and a PID controller for the depth and heading con-
trol. The input and output AUV, as the true plant, 
were taken from the NPS AUV II [10]. The depth 
and heading controls were simulated with the full 
nonlinear equation and the sliding mode controller 
developed in Eq. (29) and Eq. (33). The responses 
of the control law with the EKF values, which were 
almost the same as the true values were compared 
with those of the control law with the SMO values, 
which contained steady-state errors. 

In addition, the performance of the sliding mode 
controller was compared with that of the PID con-
troller. The traditional PID controller, with fixed 
gains, is well known as not being able to meet the 
requirements of underwater vehicle control. 

 

 
Fig. 9. SIMULINK model for control simulation 
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Fig. 10. Simulation results of depth control 

 

However, the traditional PID controller and the 
modified PID controller with variable gains, were 
applied for an AUV in the field. 

Fig. 9 shows the desired depth, tracking trajecto-
ry, and other controlled variables for the depth con-
trol simulation, which was carried out with the 
heading control to avoid the horizontal motion due 
to coupling. The desired depth was 1 m down from 
the initial depth during the first 50 secs, but then 
resumed the initial depth thereafter. From these 
figures, it was found that the performance of the 
controller with the SMO is similar to that of the 
controller with the EKF. The controller with the 
SMO exhibited particularly good tracking perfor-
mance, deviations in the coefficients'.  

 

 

 

 
Fig. 11 Simulation results of heading control 

 

This result means that the sliding mode control 
was robust, even under parameter uncertainty. In 
addition, the performance of the controller with a 
nonlinear observer was similar to that of the PID 
controller. 

Fig. 10 shows the responses of the heading con-
trol, which was simulated with depth control to 
prevent the vertical motion due to coupling. To 
follow the desired path, the line of sight [10] was 
defined in terms of the desired yaw angle, and the 
proposed heading control will then follow the de-
sired yaw angle. The desired path was chosen as 1 
m towards the y-direction during the first 50 secs, 
and then returned to the initial position. In the fig-
ures, the controller with the SMO followed the de-
sired path, which was similar to that of the control-
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ler with the EKF, but required a slightly greater 
little more rudder angle, as shown in Fig. 10 (b). It 
is worth noting that the controller with the SMO 
follows the desired path, even when the estimated 
coefficients contained steady-state errors. 
 

5. Conclusions 

A sliding mode control, using estimated hydro-
dynamic coefficients, has been proposed in this 
paper to maintain the desired depth and heading 
angle. The hydrodynamic coefficients were esti-
mated based on the nonlinear observers of the SMO 
and EKF. The EKF exhibited particularly good 
estimation performance, and estimated the coeffi-
cients with sufficient accuracy, although it con-
tained steady-state errors. Using the estimated coef-
ficients, a sliding mode controller was designed for 
the diving and steering maneuver. The control sys-
tem with the SMO was compared to that with the 
EKF. The proposed control system is demonstrated 
to be stable and accurately follow the desired depth 
and path. This means that the sliding mode control 
showed robustness under parameter uncertainties. It 
is believed the proposed estimation method reduces 
the PMM test for measuring the hydrodynamic 
coefficients. In addition, the proposed control sys-
tem makes the AUV stable and controllable in the 
presence of parameter uncertainties. 
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