DOI QR코드

DOI QR Code

Synthesis and Magnetic Properties of Nano-sized Mn Ferrite Powder and Film

  • Received : 2010.10.26
  • Accepted : 2011.02.07
  • Published : 2011.03.31

Abstract

Nano-sized manganese ferrite powders and films, $MnFe_2O_4$, were fabricated by the sol-gel method, and the effects of annealing temperature on the crystallographic and magnetic properties were studied by using X-ray diffractometry, field emission scanning electron microscopy, M$\"{o}$ssbauer spectroscopy, and vibrating sample magnetometry. X-ray diffraction spectroscopy of powder samples annealed above 523 K indicated the presence of spinel structure, and the film samples annealed above 773 K also had spinel structure. The particle size increased with the annealing temperature. For the powder samples, the Mossbauer spectra annealed above 573 K could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of $Fe^{3+}$ ions. Using the M$\"{o}$ssbauer subspectrum area ratio the cation distribution could be written as ($Mn_{0.52}Fe_{0.48}$) $[Mn_{0.48}Fe_{1.52}]$ $O_4$. However the spectrum annealed at 523 K only showed as a doublet due to a superparamagnetic phase. As the annealing temperature was increased, the saturation magnetization and the corecivity of the powder samples increased, as did the coercivity of film samples.

Keywords

References

  1. N. N. Greenwood and T. C. Gibb, Mossbauer spectroscopy, Chapman and Hall Ltd. London, (1971) p.265.
  2. A. H. Qureshi, J. Cryst. Growth 286, 365 (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.016
  3. J. Nie, H. Li, Z. Feng, and H. He, J. Magn. Magn. Mater. 265, 172 (2003). https://doi.org/10.1016/S0304-8853(03)00262-2
  4. M. K. Shobana, S. Sanka, and V. Rajendran, Mater. Chem. Phys. 113, 10 (2009). https://doi.org/10.1016/j.matchemphys.2008.07.083
  5. M. H. Mahmoud, Solid State Ionics 176, 1333 (2005). https://doi.org/10.1016/j.ssi.2005.02.017
  6. K. Oda, T. Yoshio, K. hirata, K. O. Oka, and K. Takabashi, J. Jpn. Soc. Powder: Powder Metall. 29, 170 (1982). https://doi.org/10.2497/jjspm.29.170
  7. K. P. Chae, J. G. Lee, W. K. Kim, and Y. B. Lee, J. Magn. Magn. Mater. 248, 236 (2002). https://doi.org/10.1016/S0304-8853(02)00345-1
  8. K. G. Brooks and V. R. W. Amarakoon, J. Am. Ceram. Soc. 53, 3965 (1998).
  9. S. W. Lee, J. K. Lee, K. P. Chae, W. H, Kwon, and C. S. Lee, J. Kor. Mag. Soc. (in Korean) 19, 57 (2009). https://doi.org/10.4283/JKMS.2009.19.2.057
  10. B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley Co. Readings, MA (1978) p.102.
  11. W. H. Kwon, Ph. D. Thesis, Konkuk University (2010) p.79.
  12. R. K. Datta and B. Roy, J. Am. Ceram. Soc. 50, 578 (1967). https://doi.org/10.1111/j.1151-2916.1967.tb15002.x
  13. N. Yamamoto, S. Kawano, N. Achwa, M. Kiyama, and T. Takada, Japan. J. Appl. Phys. 12, 1830 (1973). https://doi.org/10.1143/JJAP.12.1830
  14. A. S. Albuquerque, J. D. Ardisson, and W. A. A. Macedo, J. Appl. Phys. 87, 4352 (2000). https://doi.org/10.1063/1.373077

Cited by

  1. Powders vol.18, pp.1, 2013, https://doi.org/10.4283/JMAG.2013.18.1.026