DOI QR코드

DOI QR Code

TiO2 Nano-doping Effect on Flux Pinning and Critical Current Density in an MgB2 Superconductor

  • Kang, J.H. (Department of Nano and Electronic Physics, Kookmin University) ;
  • Park, J.S. (Quantum Photonic Research Center and Department of Physics, Hanyang University) ;
  • Lee, Y.P. (Quantum Photonic Research Center and Department of Physics, Hanyang University) ;
  • Prokhorov, V.G. (Institute of Metal Physics, National Academy of Sciences of Ukraine)
  • 투고 : 2010.08.24
  • 심사 : 2010.12.20
  • 발행 : 2011.03.31

초록

We have studied the $TiO_2$ doping effects on the flux pinning behavior of an $MgB_2$ superconductor synthesized by the in-situ solid-state reaction. From the field-cooled and zero-field-cooled temperature dependences of magnetization, the reversible-irreversible transition of $TiO_2$-doped $MgB_2$ was determined in the H-T diagram (the temperature dependence of upper critical magnetic field and irreversibility line). For comparison, the similar measurements are also obtained from SiC-doped $MgB_2$. The critical current density was estimated from the width of hysteresis loops in the framework of Bean's model at different temperatures. The obtained results manifest that nano-scale $TiO_2$ inclusions served as effective pinning centers and lead to the enhanced upper critical field and critical current density. It was concluded that the grain boundary pinning mechanism was realized in a $TiO_2$-doped $MgB_2$ superconductor.

키워드

참고문헌

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani,and J. Akimitsu, Nature 410, 63 (2001). https://doi.org/10.1038/35065039
  2. C. Giovannella, G. Collin, P. Rouault, and I. A. Campbell,Europhys. Lett. 4, 109 (1987). https://doi.org/10.1209/0295-5075/4/1/018
  3. X. Z. Liao, A. Serquis, Y. T. Zhu, J. Y. Huang, L. Civale,D. E. Peterson, F. M. Mueller, and H. F. Xu, J. Appl. Phys 93, 6208 (2003). https://doi.org/10.1063/1.1568528
  4. S. H. Zhou, A. V. Pan, M. J. Qin, H. K. Lin, and S. XDou, Physica C 387, 321 (2003). https://doi.org/10.1016/S0921-4534(03)00735-4
  5. S. X. Dou, S. Soltanian, J. Horvat, X. L. Wang, S. H.Zhou, M. Ionescu, H. K. Liu, P. Munroe, and M. Tomsic,Appl. Phys. Lett. 81, 3419 (2002). https://doi.org/10.1063/1.1517398
  6. Q. W. Yao, X. L. Wang, J. Horvat, and S. X. Dou,Physica C 402, 38 (2004). https://doi.org/10.1016/j.physc.2003.08.008
  7. Y. Zhao, Y. Feng, T. Machi, C. H. Cheng, D. X. Huang,Y. Fudamoto, N. Koshizuka, and M. Murakami, Europhys. Lett. 57, 437 (2002). https://doi.org/10.1209/epl/i2002-00479-1
  8. V. G. Prokhorv, G. G. Kaminsky, V. L. Svetchnikov, J. S.Park, T. W. Eom, Y. P. Lee, J.-H. Kang, V. A. Khokhlov,and P. Mihkeenko, Low Temperature Physics 35, 439(2009). https://doi.org/10.1063/1.3151990
  9. E. Martínez, P. Mikheenko, M. Martínez-Lopez, A. Millan,A. Bevan, and J. S. Abell, Phys. Rev. B 75, 134515(2007). https://doi.org/10.1103/PhysRevB.75.134515
  10. D. C. Larbalestier, M. Daeumling, X. Cai, J. Seuntjens, J. McKinnell, D. Hampshire, P. Lee, C. Meingast, T. Willis,H. Muller, R. D. Ray, R. G. Dillenburg, E. E. Hellstrom,and R. Joynt, J. Appl. Phys. 62, 3308 (1987). https://doi.org/10.1063/1.339339
  11. R. H. Koch, V. Foglietti, W. J. Gallagher, G. Koren, A.Gupta, and M. P. A. Fisher, Phys. Rev. Lett. 63, 1511(1989). https://doi.org/10.1103/PhysRevLett.63.1511
  12. C. P. Bean, Rev. Mod. Phys. 36, 31 (1964). https://doi.org/10.1103/RevModPhys.36.31
  13. Y. Kimishima, S. Takami, T. Okuda, M. Uehara, T. Kuramoto,and Y. Sugiyama, Physica C 463-465, 281 (2007). https://doi.org/10.1016/j.physc.2007.03.492