DOI QR코드

DOI QR Code

Synthesis and Characterization of Ruthenium Doped TiO2 Nanofibers

  • Park, Jung-Yeon (Department of Materials Engineering, Daelim University College) ;
  • Lee, Deuk-Yong (Department of Materials Engineering, Daelim University College) ;
  • Cho, Nam-Ihn (Department of Electronic Engineering, Sun Moon University) ;
  • Oh, Young-Jei (Optoelectronic Materials Center, Korea Institute of Science and Technology)
  • 투고 : 2010.12.01
  • 심사 : 2011.03.16
  • 발행 : 2011.03.31

초록

Ruthenium(Ru)-doped $TiO_2$ nanofibers were prepared using electrospun Ru-$TiO_2$/poly(vinyl acetate) (PVAc) fibers and subsequent annealing for 1 h at temperatures in the range of $500^{\circ}C$ to $1000^{\circ}C$ in air. The properties of the Ru-$TiO_2$ fibers were characterized as a function of the Ru content and calcination temperature using X-ray diffraction, thermal gravimetry with differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and viscometer, pycnometer and dynamic tensiometer measurements. Although the diameter of the fiber decreased slightly with increasing calcination temperature, no dramatic changes were observed with respect to the ruthenium content. The XRD and FT-IR results revealed that anatase phase and ruthenium metal began to be formed after calcination at temperatures above $500^{\circ}C$. Anatase and rutile phases and ruthenium metal coexisted in the fibers calcined above $600^{\circ}C$. No anatase phase was detected in the fibers containing ruthenium when they were calcined at $1000^{\circ}C$. The morphology of the fibers changed from smooth and uniform to porous with increasing temperature. The experimental results suggest that the calcination temperature and Ru content were influential in determining the morphology and structure of the fibers.

키워드

참고문헌

  1. D.Y. Lee, B. Kim, S. Lee, M. Lee, Y. Song, and J. Lee, “Titania nanofibers prepared by electrospinning,” J. Korean Phys. Soc. vol. 48, pp. 1686-1690, 2006.
  2. T. Phan, M.B. Song, E.J. Kim, and E.W. Shin, “Therole of rare earth metals in lanthanide-incorporatedmesoporous titania,” Micro. Meso. Mater. vol. 119, pp.290-298, 2009 https://doi.org/10.1016/j.micromeso.2008.10.039
  3. H. Choi, S. Kim, Y. Song, and D.Y. Lee, “Photodecompositionand bactericidal effects of TiO2 thin filmsprepared by a magnetron sputtering,” J. Mater. Sci.,vol. 39, pp. 5695-5699, 2004. https://doi.org/10.1023/B:JMSC.0000040078.09843.cb
  4. Y. Song, S. Kim, B. Kim, and D.Y. Lee,“Hydrophilicity and bactericidal effects of TiO2 thinfilms prepared by RF sputtering,” Mater. Sci. Forum,vol. 449-452, pp. 1261-1264, 2005.
  5. S. Madhugiri, B. Sun, P.G. Smirniotis, J.P. Ferraris, andK.J. Balkus Jr., “Electrospun mesoporous titaniumdioxide fibers,” Micro. Meso. Mater. vol. 69, pp. 77-83,2004. https://doi.org/10.1016/j.micromeso.2003.12.023
  6. P. Viswanathamurthi, N. Bhattariai, C.K. Kim, H.Y. andKim, D.R. Lee, “Ruthenium doped TiO2 fibers byelectrospinning,” Inorg. Chem. Comm. vol. 7, pp. 679-682, 2004. https://doi.org/10.1016/j.inoche.2004.03.013
  7. D.S. Bae, K.S. Han, and S.H. Choi, “Fabrication andcharacterization of Ru-doped TiO2 compositemembranes by the sol-gel process,” Mater. Lett., vol.33, pp. 101-105, 1997. https://doi.org/10.1016/S0167-577X(97)00082-7
  8. C. Sanchez, L. Rozes, F. Ribot, C. Laberty-Robert, D.Grosso, C. Sassoye, C. Boissiere, and L. Nicole,“Chimie douce: A land of opportunities for thedesigned construction of functional inorganic andhybrid organic-inorganic nanomaterials,” C.R. Chimievol. 13, pp. 3-39, 2010. https://doi.org/10.1016/j.crci.2009.06.001
  9. M. Bognitzki, W. Xzado, T. Frese, A. Schaper, M.Hellwig, M. Steinhart, A. Creiner, and J.H. Wendorff,“Nanostructured fibers via electrospinning,” Adv.Mater., vol. 13, pp. 70-72, 2001. https://doi.org/10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO;2-H
  10. Y. Wang, J.J. and Santiago-Aviles, “Synthesis of leadzirconate titanate nanofibers and the Fourier-transforminfrared characterization of their metallo-organicdecomposition process,” Nanotechnology, vol. 15 pp.32-36, 2004. https://doi.org/10.1088/0957-4484/15/1/006
  11. D.Y. Lee, K. Lee, M. and Lee, N. Cho, “Synthesis ofelectrospun $BaSrTiO_{3}/PVP$ nanofibers,” J. Sol-gel Sci.Technol., vol. 53, pp. 43-49, 2010. https://doi.org/10.1007/s10971-009-2054-7
  12. D.Y. Lee, J. Cho, N. Cho, M. Lee, S. Lee, and B.Kim, “Characterization of electrospun aluminumdopedzinc oxide nanofibers,” Thin Solid Films, vol.517 , pp. 1256-1261, 2008.
  13. J. Qiu, J. Tani, Y. Kobayashi, T.Y. Um, and H. Takahashi, “Fabrication of piezoelectric ceramic fibers by extrusion of $Pb(Zr, Ti)O_{3}$ powder and $Pb(Zr, Ti)O_{3}$sol mixture,” Smart Mater. Struct. vol. 12, pp. 331-337, 2003. https://doi.org/10.1088/0964-1726/12/3/303
  14. Y. Kim, D.Y. Lee, M. Lee, N. Cho, Y. Song, and S.Lee, “Characterization of electrospun ZnOnanofibers,” J. Korean Phys. Soc., vol. 53, pp. 421-425, 2008. https://doi.org/10.3938/jkps.53.421
  15. D.Y. Lee, M. Lee, N. Cho, B. Kim, and Y. Song,“Effect of calcination temperature and atmosphere oncrystal structure of $BaTiO_{3}$ nanofibers,” Metals Mater.Intl., vol. 16, pp. 453-457, 2010. https://doi.org/10.1007/s12540-010-0616-4
  16. W. Sigmund, J. Yuh, H. Park, V. Manceratana, G. Pyrgiotakis, A. Daga, J. Taylor, and J.C. Nino, “Processing and structure relationships in electrospinning of ceramic fiber systems,” J. Am. Ceram. Soc., vol. 89, pp. 395-407, 2006. https://doi.org/10.1111/j.1551-2916.2005.00807.x
  17. R. LOinacero, M.L. Rojas-Cervantes, and J. De, D.Lopez-Gonzalez, “Preparation of $xTiO_{2}$.(1-x)$Al_{2}O_{3}$ catalytic supports by the sol-gel method: physical and structural characterization,” J. Mater. Sci., vol. 35 pp. 3279-3287, 2000. https://doi.org/10.1023/A:1004879507005
  18. B.L. Bischoff and M.A. Anderson, “Peptization of process in the sol-gel preparation of porous anatase $(TiO_{2})$,” Chem. Mater., vol. 7, pp. 1772-1778, 1995. https://doi.org/10.1021/cm00058a004
  19. A. Navrosky and O.J. Kleppa, “Enthalpy of the anatase-rutile transformation,” J. Am. Ceram. Soc., vol. 50, p. 626, 1967. https://doi.org/10.1111/j.1151-2916.1967.tb15013.x
  20. H.Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata, and S. Yanagida, “Hydrothermal synthesis of nanosized anatase and rutile $TiO_{2}$ using amorphous phase of $TiO_{2}$,” J. Mater. Chem. vol. 11, pp. 1694-1703, 2001. https://doi.org/10.1039/b008974p
  21. G. Busca, G. Ramis, J.M. Gallardo Amores, V.S.Escribano, and P. Piaggiom “FT Raman and FTIRstudies of titanias and metatitanate powders,” J. Chem.Soc. Faraday Trans., vol. 90, pp. 3181-3190, 1994. https://doi.org/10.1039/ft9949003181
  22. M. Ocana, V. Fornes, J.V. Garcia Ramos, and C.J. Serna, “Factors affecting the infrared and Raman spectra of rutile powders,” J. Solid State Chem., vol. 75, pp. 364-72, 1988. https://doi.org/10.1016/0022-4596(88)90176-4