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Abstract

In this paper, we use-fuzzy preopen operator to introduce the degree of pre-separatedness and the degree of preconnect-
edness in-fuzzy topological spaces. Many characterizations of the degree of preconnectedness are presdareg in
topological spaces.
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2. Preliminaries

Throughout thispaper, (z,<,A,V,’) denotes a com-
pletely distributive DeMorgan algebras is a nonempty
set. The smallest element and the largest elementare

It is well known that after the introduction of the-  denoted by and 1, respectively. The set of all nonzero
fuzzy topological space by Kubiak![1] arflostak [2] in  co-prime elements of is denoted by (z).

1985, a large number of mathematicians have taken gregk say that is wedge belows in 1, denoted by < b if
interests in generalizing and extending different conceptg, g only if for every subseb c r, the relations < v b
of set topology and Chang’s fuzzy topology [3] inte  ajways implies the existence afe p with o < a [6]. A

fuzzy topology. The concept of connectedness along Wilfymplete lattice is completely distributive if and only if

some of its allied forms is one of the directions that have _ |/, c 1, « 4} for eachs ¢ r. For anys e 1, define
hitherto been ventured with meticulous attention. Howy .\ _ (. c /|, < 1.
ever, the results obtained in connection with different CoMy 4 nonempty set, the set of all nonzero coprime el-
texts like fuzzy connectedness, semi-connectedness, PLe  ents OfLX is deno,ted byv(L%). Itis easy to see that
connectedness etc. mfuzzy topological spaces are seenM(Lx) is exactly the set of all fuz.zy pOINtS. ( A € M (L)
to be quite parallel and analogous. This is chiefly due t? e smallest element and the largest elementimre de‘_
the fact that the study of these variations of the concept ofh g

fuzzy connectedness has been effected only by replaciﬂgted byo anda, respectively.

openc-subsets by the-level cut of fuzzy open.-subset or AN Z-topologicalspace is a pairx, 7), wherer is a subfam-

the like. It can thus be conjectured that the use of a suitabl¥ Of £ which contains; 1 andis closed for ap suprema
operator should obviates the userdbvel cut inz-fuzzy ~and finite infimax is called an.-topology onx. Members
topological spaces. of = are called opemn-subsets and their complements are

called closed.-subsets. The closure and the interioref
In [4], Shi introduced the notion of-fuzzy preopen op- syhsets are denoted by:(4) andrnt(a), respectively. An
eratorz, in L-fuzzy topological spaces as a generalization sypsets in (x, ) is called preoperi [7] iff < rmt(ci()).
of preopenc-subsets, where completely distributive De- The preclosure operator afin (x, <) is denoted by.ci(a).
Morgan algebra.7,(a) can be regarded as the degree t?n an -topological spacex, <), two r-subsetsa, 5 are
which 4 is preopen. So that, actualty reflects the essence called preseparated [S]Abz(,:x) /\,B — AApCI(B) = O’_ An L-

of -fuzzy topology. subset is called preconnected if cannotbe represented
In this paper, we introduce and characterize the degree a$ a union of two preseparated non-nububsets.
preseparatedness and the degree of preconnectedness IBefinition 2.1. [1, 2]An L-fuzzy topology on a set is a

fuzz_y tqpologlcal spaces. The results in our paper is a genm—apT .. _ 1. such that
eralization to the results of [5].

1. Introduction

01 7o=7T) =1,
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(O3) forall a; € LY, j € J, T(V ;e A43) > A\jes T(A)). 1) no=1n0=1

7(4) canbe interpreted as the degree to whicts anopen  (2) forall 4; € LX, j € J, T,(V e, 45) > A5 To(A)).
set. 7+ (4) = 7(A") will be called the degree of closedness .
of 4. The pair(x, 1) is called an.-fuzzy topological space. Proof. Straightforward. H

is said to be continuous with Definition 2.4. An r-fuzzy preclosure operatam x is a
mappingyct : LX — LMEY) satisfying the following con-
ditions:

A mappings : (X, 7:) — (Y, 72)
respect ta-fuzzy topologies; andz; if 7. (f; (B)) > 72(B)
holds for allz € LY, wherey; is defined byr; (B)(z) =

B(f(z))- (P1) pCL(A)(@2) = A owr PCUA) (), TOr @ll 2y € M(LY);

Theorem 2.1. [8] Let 7 : X — L be a function. Then the (P2) pCi(0)(z») =0 forarny «, e am(L*);

following conditions are equivalent: (P3) pCi(A)(er) = 1 fOF ANy < 4
xTy) = T S Ay

(1) 7 is anz-fuzy topology onx; (P4) for all a € Lo, (pCIUV (PCU(A)) [a])(a] T (PCUA))(a-

(2) 71 is anz-topology onx;, for eacha e a(z). pCl(A)(z») is called the degree to which, belongs to the

Definition 2.2. [9] An z-fuzzy closure operator ox is a Preclosure of.

mappingo: : L — 1M satisfying the following condi- 06r0m 2.3, et 7, be ther-fuzzy preopen operator on

tions: x and letpci™ be ther-fuzzy preclosure operator induced
(C1) CUAY@x) = A,y CUAY (), TOr @ll oy € M(L5); by 7,. Then for each, € m(2¥) anda e LX,
(C2) cu)(z») =0 for ary =, e M(LX); pCITP(A)(zx) = A\ (T,(D").

2L D>A
(C3) cuaran) =1foranya, <4, Proof. Straightforward. O
(C4) cuav B) =cCl(A) v CU(B);
(C5) forall a € Lo, (CLV (CLA))(a))ia] € (CLA)(a)- 3. Preseparatedness Degree L-Fuzzy

Cl(A)(zy) is called the degree to which, belongs to the TOpOloglcal Spaces

closure ofa.

Lemma 2.1. [9] Let (x, 7) be anc-fuzzy topological space Definition 3.1. Let (x,7) be anz-fuzzy topological space
and letc: be ther-fuzzy closure operator induced by  anda, B e *. Define
Then for allzy € m(¥) anda e LX,
PAB) =( N\ B @) )A( A ECUAwL) ),
CuA) (N = N\ (T(D). A s

zyLD>A

Thenr(4, B) is said to be the preseparatedness degree of
Definition 2.3. [4] Let (x,7) be anz-fuzzy topological ands.

.F X, define th ing, : LX — .
space. Fon e 1, define the mapping, : . 1 by Proposition 3.1. Let 7 : LX — {o0,1} be anz-fuzzy topol-

. ogy onx anda, B e L.X. Thenp(4, B) = 1 if and only if A
o= A V {T<B) AN N T } : ands are preseparated i, 7).

T\ <KAzy<KB yu<By,£D>A

Lemma 3.1. Let (x,7) be anrz-fuzzy topological space

Then, is called-fuzzy preopen operator induced by anda, 5 e 5. If AnB £0, thenp(a. B) — o

whereT,(a) can be regarded as the degree to whicis

preopen and;(4) = 7,(4") can be regarded as the degreeroof. Let -, € m(L¥) such that,, < 4 A 5. Thus we have
to which a is preclosed.

) P(A,B) = (pCUB)(zx))") A (pCU(A) (wr))’
Theorem 2.2. [4] Let (x,7) be ancr-fuzzy topological (TéA g ) (Tég § )
space anch ¢ X. Thena e (7;), if and only if 4 is pre- < (pCUB)(z))" A (PCUA)(2,)) = 1" A1 =0.
open in7,;, whereq e M (L) and(7,),; = {A € LX | T,(4) >

a}. O

Lemma 2.2. Let 7, : L¥ — L be An-fuzzy preopen oper- Lemma 3.2. Let (x,7) be anz-fuzzy topological space,
ator induced by.-fuzzy topologyz. Thenz, satisfies the anda4, B, ¢, b e L. If ¢ < aandp < B, thenp(4, B) <
following conditions: P(C, D).
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Proof If ¢ < 4 andp < B, thenpci(c) < pci(a) and
pCl(D) < pCi(B). Hence we have

PAB) = (A Gade))a( A ECU b))
z) <A yg<B
< (A woup)y@)) ) A N\ @CUC)a)))
zN<A yg<B
< (A eam@)))a( A @CUC)ws)))
z)<C yg<D
= P(C,D).

O

Lemma 3.3. Let (x,7) be anr-fuzzy topological space,
A, B € L¥ anda € M(L). Then(pa, B)) > « if and only
if there existp, £ € LX such thato > 4, E > B, DA B =
EAA=0and(7,(D") Vv (T,(E") ¥ a.

Proof. Supposehat(r(4, B))’ > a. Then(p(4, B))’ > » for
somes e 8*(a). Then

\/ pCi(B)(zx)V \/ pCl(A)(yp) #b.
z <A yg<B

Moreover, we have

(Tp(D")) 2.

A

2 \<Az\LE>B

(T(E) v A

yg<BygLD=>A

Hence for anyz, < 4 and for anyy; < B, there exist
Dyyy Euy € LX such thate, % E.,, > B, ys £ Dy, > A
and (z,(p, ) v (T,(;,)) ¢ b. Lets = A, _, B, and
D = N,,<5 Dy Then, we have thab > 4, £ > B,

DAB=EAA=0and

(To(DN VA(T,(ED)) = (T(\ D,)N'V(T(\ E.))
yg<B z\<B
<V (Tp(Dy,)" v V (T(E,))
yg<B zy<A
2 a.

Conversely if there exist, £ e L* such thato > 4, £ > B,
DAB=EAA=0anNd(7,(D") Vv (T,(E")) ¥ a. SiNCE

(P(A,B) = \/ pCUB)(=x) V' pCl(A)(yp)

z <A yg

=V A (@@

zy<AzyZG>B

vV A

yg<BygLH>A

< (T(DN)) V(T(EY).

(Tp(H"))'

Then(ra, B)) # a.
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4. PreconnectednesBegree inL-Fuzzy
Topological Spaces

Definition 4.1. Let (x,7) be anr-fuzzy topological space
andc e .X. Define

PC(G) = N\ {’P(A,B)/ : ABeLX\{0}, G=AV B} )
Thenpc(c) is said to be the preconnectedness degree of

From Definition 3.1, we have

PC(G) =

A V pCUB)@) v\ pCUA)(ys) ¢ -
A,BeLX\{o}, [ =as4 yp<B
Proposition 4.1. Let 7 : LX — {0,1} be anz-topology onx
andc € LX. Thenpc(a) = 1ifand only if ¢ is preconnected
in (x, 7).

Theorem 4.1. Let (x,7) be anz-fuzzy topological space
andc e X. Then

PC(G) =

A

GANA#0,GAB#0,
GAAAB#0,G<AVB

{(Tp(A) Vv (T(B")'} .

Proof. (=): Pc(a)

= A { V rcuB @)V pCUA) ()}
A,BeLX\{0}, Za=A yg<B
G=AVB

= A V (Z,(D')' v\ (T,(E")'}
A,BeLX\{0}, @rSAxy£D2B yg<BygZLE>A
G=AVB

= A { V AN @oyv V (T,(E")'}
GAA#0 23 <GAA z\£D yg<GAB yg«E
GAB#0 D>GAB E>GANA
GANAAB=0, -
G=AVB

< A { V @oyv V (TE)]
GAA#0,GAB#0, zy<GAA yg<GAB
GNAAB=0,G=AVB

= A {0 v (T,(E))}
GAA#0,GAB#0,
GANAANB=0,G=AVB

(«): Supposehatrc(a) # « Wherea € M(L). Then there
exista, B e LX\{o} suchthatc = 4 v B and(p(4, B))] # a.
By Lemmal 3.3, there exisb, £ € ¥ such thatp > 4,
E>B,DAB=EAA=0aNd(7,(D") v (T,(E")) # «. HENCE
we have

A {(Tx(B) vV (T,(A)'} % a.
GANA#0,GAB#0,
GAAANB=0,G<AVB
Therefore
PC(G) > A {(T(B")) v (T,(A))'}

GANA#0,GAB#0,
GAAAB=0,G<AVB

andthis completeghe proof.
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Corollary 4.2. Let (x,7) bean r-fuzzy topological space.
Then

PeQ) =

A

{(To(A) Vv (T(B))'}.

Theorem 4.3. Forary =z, € m(L%), it follows thatpc(zy) =

1.
Proof. Straightforward. O

Theorem 4.4. Forary G € L%, we have

V

beM (LX)

P\ (pCUG)) ) = PC(G).

Proof. Let « < Pc(c) wherea ¢ M (1) and suppose that
Vyenr(oy PEV 0CUG) ) # a. ThENPC(V (pCUG)) 1) 2 a-
By using Theorem 4!1, there exist B ¢ ¥ such that
(V(@CU)) ) AA # 0, (V (pCUG))(a)) AB # 0, (V(CUG))(a)) A
ANB =0,V (@CUG))a < AABaNA(T,(B")) V (T,(A)) # a.

Since(V (pCi(@))a)) A A # 0, there exists:, < 4 suchthat
pCL(G)(z») > a. FUrthermore, Sincg/ (pCL(G))()) AAAB = 0,
we havez, « B.

If A #0,thenc <V (pCl(G)), < AVvBWehavea < B,
hence it follows that

a < pCl(G)(zx) =

A

2\ LE>G

(Tp(E")) < (Tp(B")

which is a contradiction. Analogously, we can preves #
0. ThusbyGaa£0,GAB#0,GAAAB=0,G < AV B,
(T,(B)) Vv (T,(4")) ¥ « and Theorem 4.1, weknow that
PC(G) # a, CONtradictingrc(a) > «. It is proved that

V

beM (LX)

Pe(\/ (pCUG)) ) > PC(G).

Theorem 4.5. Forary ¢, # € L%, we have
PC(GV H) > (P(G,H)) APC(G) ANPC(H).

Proof. Leta < (P(G, H))' A PC(G) A PC(H) Wherea e M(L)
and suppose thatc(cvH) # «. Then by using Theorem 4.1,
there exist4, B € LX suchthattvH)AA £ 0, (GVH)AB # 0,
(GVHYAAAB =0, GVH < AvBand(7,(B")) v (T,(A")) # a.
Since(cvH)AA£0,Wehaearax£oandH A A #o.

Supposehatc A a4 # o (The case ofz A 4 # ¢ is analo-
gous). Then wéave ¢ A B = o, otherwise ifc A B # o,
thenby GAaA#£0,GAB#£0,GAAAB=0,G< AvBand
(T,(B")) vV (T,(A")) # a, We knowthatrc(c) ¥ «, which is a
contradiction. In this case hy: v 1) A B % 0 we know that
H A B # 0. Analogously we camprove H A A = 0. Thus by
GV H < Av B we canobtainthatc < 4 andx < B. Hence
byc<A, H<B,GAB=HAA=0, (T,(B)) V(T,(A)) #a
andLemma 3.3, weéhave (p(G, H))' # a, Which is a contra-
diction. This shows thatc(c v H) > « and this completes
the proof. O

Corollary 4.6. Let (x,7) bean r-fuzzy topological space
andg, He LX. If AAB #0,then

PC(GV H) > PC(G) A PC(H).

Theorem 4.7. Let (x,7) be anz-fuzzy topological space
andc e L*. Then

PCG) = A \/{PC(D”,%) @5, Ys < Dayyy < G}
mA,y/BSG
Proof. Suppose thaV\mA,yﬁSGv{PC(Dwk,yﬁ) ©oma,ys <

Doy ,yy <G} >a wherea € M (L). Take az, < G fixed. Then
for anyy, < G, there existo,, ,, € L* such that,, ys <
Day .y < GANAPC(D,, ;) > a. LEtD,, = Vyy<6 Daxuge
Thenp,, =¢ and/\yﬁsc D.,,y, # 0. By using Corollary
4.6, we haverc(G) = PC(D.,) > Ayg<aPCDay uy) 2 a-
This shows that

PC(G) > N\ VAPC(Dayup) i @xyp < Day,yy < G}
z\.Yyg<G
Since
PCG) < N VAPC(Duy up) i o,y < Day oy < G}
zx,yg<G

is clear, then we have

A

z\: Yy <G

PC(G) = \/{PC(D.’I)A,?/B) ST, Yp < D:nA,yﬁ < G}
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