DOI QR코드

DOI QR Code

Interval-Valued Fuzzy mβ-continuous mappings on Interval-Valued Fuzzy Minimal Spaces

  • Min, Won-Keun (Department of Mathematics, Kangwon National University)
  • Received : 2010.01.13
  • Accepted : 2010.12.26
  • Published : 2011.03.25

Abstract

We introduce the concepts of interval-valued fuzzy m${\beta}$-open sets and interval-valued fuzzy m${\beta}$-continuous mappings. And we study some characterizations and properties of such concepts.

Keywords

References

  1. K. T. Atanassov, ”Intuitionistic fuzzy sets”, Fuzzy Sets and System, vol. 20, no. 1, pp. 87–96, 1986. https://doi.org/10.1016/S0165-0114(86)80034-3
  2. M. Alimohammady and M. Roohi, ”Fuzzy minimal structure and fuzzy minimal vector spaces”, Chaos,Solutions and Fractals, vol. 27, pp. 599–605, 2006. https://doi.org/10.1016/j.chaos.2005.04.049
  3. M. B. Gorzalczany, ”A method of inference in approximate reasoning based on interval-valued fuzzy sets”, Fuzzy Sets and Systems, vol. 21, pp. 1–17, 1987. https://doi.org/10.1016/0165-0114(87)90148-5
  4. Y. B. Jun, S. S. Kim and C. S. Kim ”Interval-valued fuzzy semi-preopen sets and interval-valued fuzzy semi-precontinuos mappings”, Honam Math. J., vol.29, no. 2, pp. 223–244, 2007. https://doi.org/10.5831/HMJ.2007.29.2.223
  5. W. K. Min, ”Interval-Valued Fuzzy Minimal Structures and Interval-Valued Fuzzy Minimal Spaces”, International Journal of Fuzzy Logic and Intelligent Systems, vol. 8, no. 3, pp. 202-206, 2008. https://doi.org/10.5391/IJFIS.2008.8.3.202
  6. W. K. Min, M. H. Kim and J. I. Kim, ”Interval-Valued Fuzzy m-semiopen sets and Interval-Valued Fuzzy m-preopen sets on Interval-Valued Fuzzy Minimal Spaces”, Honam Mathetical J., vol. 31(1), (2009) pp. 31–43. https://doi.org/10.5831/HMJ.2009.31.1.031
  7. W. K. Min and Y. H. Yoo, ”Interval-Valued Fuzzy $m{\alpha}$-continuous mappings on Interval-Valued Fuzzy Minimal Spaces”, International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 1, pp. 54-58, 2010. https://doi.org/10.5391/IJFIS.2010.10.1.054
  8. T. K. Mondal and S. K. Samanta, ”Topology of interval-valued fuzzy sets”, Indian J. Pure Appl. Math., vol. 30, no. 1, pp. 23–38, 1999.
  9. L. A. Zadeh, ”Fuzzy sets”, Inform. and Control, vol. 8, pp. 338–353, 1965. https://doi.org/10.1016/S0019-9958(65)90241-X