DOI QR코드

DOI QR Code

Development of High Meat Quality Using Microsatellite Markers in Berkshire Pigs

Microsatellite Marker를 이용한 육질 우수 버크셔 계통 조성에 관한 연구

  • Lee, Yong-Hwa (Swine Science and Technology Center, Gyeong Nam National University of Science and Technology) ;
  • Kwon, Seul-Gi (Swine Science and Technology Center, Gyeong Nam National University of Science and Technology) ;
  • Park, Da-Hye (Swine Science and Technology Center, Gyeong Nam National University of Science and Technology) ;
  • Kwon, Eun-Jung (Swine Science and Technology Center, Gyeong Nam National University of Science and Technology) ;
  • Cho, Eun-Seok (Swine Science and Technology Center, Gyeong Nam National University of Science and Technology) ;
  • Bang, Woo-Young (Swine Science and Technology Center, Gyeong Nam National University of Science and Technology) ;
  • Park, Hwa-Chun (Pig Breeding Company) ;
  • Park, Beom-Young (National Institute of Animal Science, RDA) ;
  • Choi, Jong-Soon (Korea Basic Science Institute) ;
  • Kim, Chul-Wook (Swine Science and Technology Center, Gyeong Nam National University of Science and Technology)
  • 이용화 (경남과학기술대학교 양돈과학기술센터) ;
  • 권슬기 (경남과학기술대학교 양돈과학기술센터) ;
  • 박다혜 (경남과학기술대학교 양돈과학기술센터) ;
  • 권은정 (경남과학기술대학교 양돈과학기술센터) ;
  • 조은석 (경남과학기술대학교 양돈과학기술센터) ;
  • 방우영 (경남과학기술대학교 양돈과학기술센터) ;
  • 박화춘 (다산종돈) ;
  • 박범영 (농촌진흥청 국립축산과학원) ;
  • 최종순 (한국기초과학지원연구원) ;
  • 김철욱 (경남과학기술대학교 양돈과학기술센터)
  • Received : 2010.10.27
  • Accepted : 2011.03.25
  • Published : 2011.04.30

Abstract

In this study, the efficiency of microsatellite (MS) markers for pork quality was examined and further, their suitability to domestic pork industry also was verified, by measuring meat quality parameters of Berkshire breeds. A total of 323 pigs of Berkshire breeds were slaughtered and subjected to meat quality evaluation. In addition, the genomic DNAs from blood samples of slaughtered pigs were used for genotyping analysis of 50 MS markers. The results revealed that Berkshire breeds have excellent meat quality, compared with the popular domestic breeds such as Duroc, Yorkshire, and Landrace. Noticeably, the Berkshire breeds exhibited a significant post-mortem pH24hr ($5.88{\pm}0.01$) and fat content ($2.878{\pm}0.06$). Through the linkage analysis between MS markers, 14 MS markers showed significant association with meat quality traits (p<0.05). Maximum significant differences of 0.55 pH24hr value and 2.04% fat content were observed between the highest and lowest allele populations. If these 14 MS markers are applied to the pork quality diagnosis kit, the synergistic effect can be expected in meat quality parameters such as meat color, fat content, pH 24 hr, cooking loss, drip loss and water-holding capacity.

본 연구는 버크셔종의 육질에 대한 특성을 분석하여 국내 돈육시장에서의 적합성을 확인하고, MS marker를 이용한 육질 우수 개체 선발의 효율성에 대해서 분석하였다. 버크셔 323두를 동일 사양조건에서 사육하고 도축하여 육질형질을 분석하고, 혈액으로부터 genomic DNA를 분리하여 50개의 MS marker에 대한 유전자형을 분석하였다. 버크셔종은 국내에서 가장 많이 이용되고 있는 듀록, 요크셔, 랜드레이스 종보다도 육질에 있어서 더욱 우수한 특성을 나타내었다. 특히 도축 24시간 후 pH 값은 평균 $5.88{\pm}0.01$로 대단히 높게 나타났고, 지방함량의 경우에도 $2.878{\pm}0.06$로 확인되었다. MS marker와의 연관성을 확인한 결과, 14개 MS marker가 육질형질과 연관성을 있는 것으로 나타났다(p<0.05). 특히 pH24hr와 지방함량에서는 가장 높은 값을 가지는 대립유전자집단이 가장 낮은 집단에 비해 최고 0.55, 2.04%가 높은 것을 확인할 수 있었다. 이러한 특성을 버크셔종의 육질 우수 개체 선발에 이용한다면 육색, 지방함량, pH24hr, 가열감량, 드립감량, 그리고 보수성에서 육질 형질값의 높은 개량효과를 기대할 수 있을 것으로 판단된다.

Keywords

References

  1. Anderson. S., Aldana, S., Beggs, M., Birkey, j., Conquest, A., Conway, R., Hemminger, T., Herrick, j., Hurley, C., Ionita, C.,Longbind, j., McMaignal, S., Milu, A., Mitchell, T., Nanke, K.,Perez, A., Phelps, M., Reitz, J., Salazer, a., Shinkle, T. Strampe,M., Van Horn, K., Williams, J., Wipperfurth, C., Zelten, S. andZerr, S. 2007. Determination of fat, moisture, and protein in meat and meat products by using the FOSS $FoodScan^{tm}$ Near-Infrared Spectrophotometer with FOSS artificial neural network calibration model and associated (4):1073-1082.
  2. Bertram, H. C., Petersen, J. S. and Andersen, H. J. 2000. Relationship between RN- genotype and drip loss in meat from Danish pigs. Meat Science 56:49-55. https://doi.org/10.1016/S0309-1740(00)00018-8
  3. Bidanel, J. P. and Rothschild, M. F. 2002. Current status of quantitative trait locus mapping in pigs. Pig News and Information 23: 39N-53N.
  4. Girard, J. P., Goutefongea, R., Monin, G. and Touraille, C. 1986. In: Le porc et son elevage, (Perez, J. M., Mornet, P. and Rerat, A. (Eds)), Maloine, Paris. p.461.
  5. Grisart, B., Coppieters, W., Farnir, F., Karim, L., Ford, C., Berzi, P.,Cambisano, N., Mni, M., Reid, S., Simon, P., Spelman, R.,Georges, M. and Snell, R. 2002. Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Research 12: 222-231. https://doi.org/10.1101/gr.224202
  6. Harmegnies, N., Davin, F., De Smet, S., Buys, N., Georges, M. and Coppieters, W. 2006. Results of a whole-genome quantitative trait locus scan for growth, carcass composition and meat quality in a porcine four-way cross. Animal Genetics 37:543-553. https://doi.org/10.1111/j.1365-2052.2006.01523.x
  7. Hou, J. G., Li, J. Q., Chen, Y. S. and Wang, C. 2003. Relationships between microsatellite DNA markers and pork quality traits. Journal of south china agricultural university(Natural Science Edition), 24:63-66.
  8. Huff-Lonergan, E., Baas, T. J., Malek, M., Dekkers, J. C. M. andPursa, K. 2002. Correlations among selected pork quality traits. Journal of Animal Science 80(3):617-627. https://doi.org/10.2527/2002.803617x
  9. de Koning, D. J., Harlizius, B., Rattink, A. P., Groenen, M. A.,Brascamp, E. W. and van Arendonk, J. A. 2001. Detection and characterization of quantitiative trait loci for meat quality traits in pigs. Journal of Animal Scienece 79:2812-2819. https://doi.org/10.2527/2001.79112812x
  10. Laakkone, E., Wellington, G. H. and Skerbon, J. W. 1970. Low temperature longtime heating of bovine. I. Changes in tenderness, water binding capacity, pH and amount of water-soluble component. J. Food. Sci. 35:175-177. https://doi.org/10.1111/j.1365-2621.1970.tb12131.x
  11. Le Roy, P., Naveau, J., Elsen, J. M. and Sellier, P. 1990. Evidence for a new major gene influencing meat quality in pigs. Genetics Research 55:33-40. https://doi.org/10.1017/S0016672300025179
  12. Liu, G., Jennen, D. G. J., Tholen, E., Juengst, H., KleinWachter, T., Holker, M., Tesfaye, D., Ün, G., Schreinemachers, H.-J., Murani, E., Ponsuksili, S., Kim, Schellander, K. and van Laere, A. S., Nguyen, M., Braunschweig, M., Nezer, C., Collette, C., Moreau, L., Archibald, A. L., Haley, C. S., Buys, N., Tally, M., Andersson, G., Georges, M. and Andersson, L. 2003. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425: 832-836. https://doi.org/10.1038/nature02064
  13. Liu, G., Jennen, D. G. J., Tholen, E., Juengst, H., KleinWachter, T.,Holker, M., Tesfaye, D., Ün, G., Schreinemachers, H.-J., Murani,E., Ponsuksili, S., Kim, J.-J., Schellander, K. and Wimmers. K.2006. A genome scan reveals QTL for growth, fatness, leanness and meat quality in a Duroc-Pietrain resource population. Animal Genetics. 37, 17-27. https://doi.org/10.1111/j.1365-2052.2005.01368.x
  14. Liu, G., Jennen, D. G. J., Tholen, E., Juengst, H., KleinWachter, T.,Holker, M., Tesfaye, D., Ün, G., Schreinemachers, H.-J., Murani,E., Ponsuksili, S., Kim, J.-J., Schellander K. and Wimmers. K.2007. A genome scan reveals QTL for growth, fatness, leanness and meat quality in a Duroc-Pietrain resource population. Animal Genetics, 38, 241-252. https://doi.org/10.1111/j.1365-2052.2007.01592.x
  15. Looft, C., Milan, D., Jeon, J. T., Paul, S., Reinsch, N., Gaillard, C.R., Rey, V., Amarger, V., Robic, A., Kalm, E., Chardon, P. and Andersson, L. 2000. A high-density linkage map of the RN region in pigs. Genet. Sel. Evol. 32:321-329. https://doi.org/10.1186/1297-9686-32-3-321
  16. Malek, M., Dekkers, J. C., Lee, H. K., Baas, T. J., Prusa, K., Huff-Lonergan, E. and Rothschild, M. F. 2001. A molecular genome scan analysis to dentify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mammalian Genome 12:637-645. https://doi.org/10.1007/s003350020019
  17. Milan, D., Jeon, J.-T., Looft, C., Amarger, V., Robic, A., Thelander,M., Claire, R. G., Pau, S., Iannuccelli, N., Rask, L., Ronne, H.,Lundström, K., Reinsch, N., Gellin, J., Kalm, E., Le Roy, P., Chardon, P. and Andersson, L. 2000. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288:1248-1251. https://doi.org/10.1126/science.288.5469.1248
  18. Offer, G. 1991. Modeling of the formation pale, soft and exudative meat: Effects of chilling regime and rate and extent of glycolysis. Meat Science 30:157-184. https://doi.org/10.1016/0309-1740(91)90005-B
  19. Park, B. Y., Cho, S. H., Yoo, Y. M., Ko, J. J., Kim, J. H., Chae, H.S., Ahn, J. N., Lee, J. M., Kim, Y. K. and Yoon, S. K. 2001. Animal products and processing : Effect of carcass temperature at 3h post-mortem on pork quality. J. Anim. Sci. Technol (Kor). 43:949-954.
  20. Rohrer, G. A., Thallman, R. M., Shackelford, S., Wheeler, T. andKoohmaraie, M. 2005. A genome scan for loci affecting pork quality in a Duroc-Landrace F2 population. Animal Genetics 37: 17-27.
  21. Rothschild, M. F. 2004. Porcine genomics delivers new tools and results: This little piggy did more than just go to market. Genetical Research 83:1-6. https://doi.org/10.1017/S0016672303006621
  22. Rothschild, M. F. and Soller, M. 1997. Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8:13-20.
  23. SAS. 2002. $SAS{\circledR}$ User’s Guide: Statistics. Version 9th, Statistical Analysis System Institute Inc., Cary, NC, USA.
  24. Sellier, P. 1998. Genetics of meat and carcass traits. In : Rothchild, M. F., Ruvinsky, A. (Eds.), The genetics of the pig. CAB International, 463-510.
  25. Takeda, H., Caiment, F., Smit, M., Hiard, S., Tordoir, X., Cockett,N., Georges, M. and Cardlier, C. 2006. The callipyge mutation enhances bidirectional long-range DLK1-GTL2 intergenic transcription in cis. Proceedings of the National Academy of Sciences of the United States of America 103:8119-8124. https://doi.org/10.1073/pnas.0602844103
  26. van Wijk, H. J., Dibbits, B., Baron, E. E., Brings, A. D., Harlizius,B., Groenen, M. A. M., Knol, E. F. and Bovenhuis, H. 2006.Identification of quantitative trait loci for carcass composition and pork quality traits in a commercial finishing cross. J. Anim. Sci. 84:789-799. https://doi.org/10.2527/2006.844789x
  27. Winter, A., Kramer, W., Werner, F. A., Kollers, S., Kata, S.,Durstewitz, G., Buitkamp, J., Womack, J. E., Thaller, G. andFries, R. 2002. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proceedings of the National Academy of Sciences of the United States of America 99:9300-9305. https://doi.org/10.1073/pnas.142293799
  28. 김형주. 2005. 브랜드 돈육 생산을 위한 종돈의 선택과 활용, 종돈개량 p66-70.
  29. 서강석. 2009. 육질향상을 위한 돼지개량, 종돈개량 p53-57.
  30. 종돈개량. 2005. 품종별 육질 비교 평가, Breeding & A. I. Technique.
  31. 한국육류수출입협회. 2006. 돼지고기 소비실태조사

Cited by

  1. Genetic Traceability of Black Pig Meats Using Microsatellite Markers vol.27, pp.7, 2014, https://doi.org/10.5713/ajas.2013.13829
  2. Comparison of Carcass Characteristics and Meat Quality between Duroc and Crossbred Pigs vol.34, pp.2, 2014, https://doi.org/10.5851/kosfa.2014.34.2.238