DOI QR코드

DOI QR Code

분말붕소법을 이용한 오스테나이트계 스테인리스 316L강의 기계적 특성 향상을 위한 연구

Characteristics of Boronized 316L Austenitic Stainless Steel by Powder Boronizing

  • 차병철 (한국생산기술연구원 동남권기술실용화본부) ;
  • 방현배 (한국생산기술연구원 동남권기술실용화본부) ;
  • 조형호 (한국생산기술연구원 동남권기술실용화본부) ;
  • 정우창 (한국생산기술연구원 동남권기술실용화본부)
  • 투고 : 2011.03.14
  • 심사 : 2011.04.29
  • 발행 : 2011.04.30

초록

In this study, the mechanical properties of boronized 316L austenitic stainless steel have been investigated. Boronizing was carried out in solid medium consisting of Ekabor powder at $900^{\circ}C$ and $1000^{\circ}C$ for 2, 4 and 8 hours, respectively. The properties of sample were analyzed by field emission scanning electron microscope, X-ray diffractometer, Glow discharge spectrometer, micro-hardness tester and ball-on-disk wear tester. Increasing the boronizing time and temperature, the hardness of boronized samples were shown over Hv 2000 and the thickness of boride layers were also increased linearly. XRD patterns of samples were revealed the presence of borides such as FeB, $Fe_2B$, CrB, $Cr_2B$ and $Ni_3B$. Friction coefficient of boronized STS 316L was shown the low value at $900^{\circ}C$ for 8 hours and $1000^{\circ}C$ for 4 hours, respectively.

키워드

참고문헌

  1. Ozbek, B. A. Konduk, J. T. Blucher, B. C. Giessen, Vacuum, 65(3-4) (2002) 521. https://doi.org/10.1016/S0042-207X(01)00466-3
  2. D. Mu, B. L. Shen, X. Zhao, Materials & Design,31(8) (2010) 3933. https://doi.org/10.1016/j.matdes.2010.03.024
  3. K. G. Anthymidis, P. Zinoviadis, D. Roussos, D.N. Tsipas, Mater. Res. Bull., 37(3) (2002) 515. https://doi.org/10.1016/S0025-5408(02)00672-4
  4. I. Campos, M. Palomar, A. Amador, R. Ganem, J.Martinez, Surf. Coat. Technol., 201(6) (2006) 2438. https://doi.org/10.1016/j.surfcoat.2006.04.017
  5. G. K. Kariofillis, G. E. Kiourtsidis, D. N. Tsipas,Surf. Coat. Technol., 201(1-2) (2006) 19.
  6. C. Meric, S. Sahin, B. Backir, N. S. Koksal,Materials & Design, 27(9) (2006) 751. https://doi.org/10.1016/j.matdes.2005.01.018
  7. E. Menthe, K. T. Rie, Surf. Coat. Technol., 116-119 (1999) 199. https://doi.org/10.1016/S0257-8972(99)00085-7
  8. K. Marchev, C. V. Cooper, J. T. Blucher, B. C.Giessen, Surf. Coat. Technol., 99(3) (1998) 225. https://doi.org/10.1016/S0257-8972(97)00532-X
  9. V. Jain, G. Sundararajan, Surf. Coat. Technol., 149(1)(2002) 21. https://doi.org/10.1016/S0257-8972(01)01385-8
  10. M. Carbucicchio, G. Palombarini, J. Mater. Sci. Lett.,6(10) (1987) 1147. https://doi.org/10.1007/BF01729165
  11. I. Campos-Silva, M. Ortiz-Dominguez, O. Bravo-Barcenas et al., Surf. Coat. Technol., 205(2) (2010)403. https://doi.org/10.1016/j.surfcoat.2010.06.068
  12. I. Campos, M. Farah, N. Lopez, G. Bermudez et al., Appl. Surf. Sci., 254(10) (2008) 2967. https://doi.org/10.1016/j.apsusc.2007.10.038
  13. K. Genel, I. Ozbek, C. Bindal, Mater. Sci. Eng. A, 347(1-2) (2003) 311. https://doi.org/10.1016/S0921-5093(02)00607-X
  14. D. C. Lou, J. K. Solberg, O. M. Akselsen, N. Dahl,Mater. Chem. Phys., 115(1) (2009) 239. https://doi.org/10.1016/j.matchemphys.2008.11.055
  15. N. M. Mikhin, K. S. Lyapin, Russian Physics Journal, 13(3) (1970) 317.