DOI QR코드

DOI QR Code

Development of High Performance Photoelectrode Paste Doped Glass Powder for Dye-sensitized Solar Cells

염료감응형 태양전지용 유리분말이 함유된 고효율 광전극 페이스트 개발

  • Zhao, Xing Guan (Department of Electrical Engineering, Chonnam National University) ;
  • Jin, En Mei (Department of Electrical Engineering, Chonnam National University) ;
  • Gua, Hal-Bon (Department of Electrical Engineering, Chonnam National University)
  • ;
  • ;
  • 구할본 (전남대학교 전기공학과)
  • Received : 2011.02.08
  • Accepted : 2011.04.26
  • Published : 2011.05.11

Abstract

Hybrid $SiO_2-TiO_2$ photoelectrode with different type of layers was investigated in dye-sensitized solar cells (DSSC). Use of a thin layer of nanocrystalline $TiO_2$ would imply reduction in the amount of dye coverage, however, lower amount of dye in the thin films would imply fewer electron generation upon illumination. So, thus, it becomes necessary to include a $SiO_2-TiO_2$ layer for increase light harvesting effect such that the lower photon conversion due to thin layer could be compensated. In this paper reports the use of transparent high surface area $TiO_2$ layer and an additional $SiO_2-TiO_2$ layer, thus ensuring adequate light harvesting in these devices. The best solar conversion efficiency 6.6% under AM 1.5 was attained with a multi-layer structure using $TiO_2$ layer/$SiO_2-TiO_2$ layer/$TiO_2$ layer for the light harvesting and this had resulted to about 44% increase in photocurrent density of dye-sensitized solar cells.

Keywords

References

  1. Y. Lee, M. Kang, Mater. Chem. Phys., 122, 284 (2010). https://doi.org/10.1016/j.matchemphys.2010.02.050
  2. K. H. Ko, Y. C. Lee, and Y. J. Jung, J. Colloid Interf. Sci., 283, 482 (2005). https://doi.org/10.1016/j.jcis.2004.09.009
  3. M .C. Kao, H. Z. Chen, S. L. Young, C. Y. Kung,and C. C. Lin, c, 517, 5096 (2009). https://doi.org/10.1016/j.tsf.2009.03.102
  4. Y. Zhang, J. Zhang, P. Wang, G. Yang, Qiang Sun, J. Zheng, Y. Zhu, Mater. Chem. Phys., 123, 595 (2010). https://doi.org/10.1016/j.matchemphys.2010.05.020
  5. H. G. Jung, Y. S. Kang, Y. K. Sun, Electrochim. Acta, 55, 4637 (2010). https://doi.org/10.1016/j.electacta.2010.03.031
  6. L. Dupuy, S. Haller, J. Rousset, F. Donsanti, J. F. Guillemoles, D. Lincot, F. Decker, Electrochem. Commun., 12, 697 (2010). https://doi.org/10.1016/j.elecom.2010.03.009
  7. N. N. Dinh, M. C. Bernard, A. H. L. Goff, T. Stergiopoulos, and P. Falaras, C. R. Chim., 9, 676 (2006). https://doi.org/10.1016/j.crci.2005.02.042
  8. B. Li, Y. Tang, L. Luo, T. Xiao, D. Li, X. Hu, and M. Yuan, C. R. Chim., 257, 197 (2010).
  9. J. T. Kim and S. H. Kim, Sol. Energ. Mat. Sol. C., 95, 336 (2011). https://doi.org/10.1016/j.solmat.2010.04.045
  10. K. H. Ko, Y. C. Lee, and Y. J. Jung, J. Colloid Interf. Sci., 283, 482 (2005). https://doi.org/10.1016/j.jcis.2004.09.009
  11. J. Lee, B. Jeong, S. Jang, Y. Kim, and Y. Jang, J. Ind. Eng. Chem., 15, 724 (2009). https://doi.org/10.1016/j.jiec.2009.09.053
  12. S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, Sol. Energ. Mat. Sol. C., 90, 1176 (2006). https://doi.org/10.1016/j.solmat.2005.07.002
  13. A. Kitiyanan, S. Ngamsinlapasathians, S. Pavasupree, and S. Yoshikawa, J. Solid state Chem., 178, 1044 (2005). https://doi.org/10.1016/j.jssc.2004.12.043
  14. A. Kitiyanan, T. Kato, Y. Suzuki, and S. Yoshikawa, J. Photochem. Photobiol. A, 179, 130 (2006). https://doi.org/10.1016/j.jphotochem.2005.08.002
  15. T. Hoshikawa, T. Ikebe, M. Yamada, R. Kikuchi, and K. Eguchi, J. Photochem. Photobiol. A, 184, 78 (2006). https://doi.org/10.1016/j.jphotochem.2006.04.001
  16. K. H. Park, E. M. Jin, H. B. Gu, S. E. Shim, and C. K. Hong, Maters Lett., 63, 2208 (2009). https://doi.org/10.1016/j.matlet.2009.07.034