DOI QR코드

DOI QR Code

Synthesis and Characterization of Quaterrylene Bisimide as NIR Colorant

NIR Colorant용 Quaterrylene Bisimide의 합성 및 특성 연구

  • Park, Keun-Soo (Department of Image Science & Engineering, Pukyong National University) ;
  • Jeong, Yeon-Tae (Department of Image Science & Engineering, Pukyong National University)
  • 박근수 (부경대학교 이미지시스템공학과) ;
  • 정연태 (부경대학교 이미지시스템공학과)
  • Received : 2011.03.24
  • Accepted : 2011.04.04
  • Published : 2011.05.11

Abstract

Recently, Near-infrared (NIR)colorant is intriguing and attractive but full of challenges. Although some cyanine colorant have been commercialized, near-infrared colorant with intensive NIR absorption, good chemical and photo-stability, and high solubility still remain as target compound. Certain polycyclic aromatic compounds such as quaterrylene represent a key class of NIR colorant and also give rise to outstanding physical and chemical properties after appropriate chemical modification. In this study, We have tried to introduceimide functional group to quaterrylene in order to give chemical and thermal stability. Finally, N,N'-bis (2,6-diisopropylphenyl)-quarterrylene-3,4:13,14-tetracarboximide was synthesized and evaluated its properties using $^1H$ NMR, Maldi-tof, TGA, and UV/VIS/NIR spectroscopy as NIR colorant. The quaterrylene bisimide compound exhibit a excellent thermal stability and chemical stability.

Keywords

References

  1. J. Seixas de Melo, S. Takato, M. Sousa, M. J. Melo, and A. J. Parol, “Revisiting Perkin’s dye(s): the spectr oscopy and photophysics of two new mauveine compo unds (B2 and C)”, http://pubs.rsc.org/, DOI: 10.1039/b618926a (2007).
  2. C. Jiao and J. Wu, Current Organic Chemistry, 14, 2145 (2010). https://doi.org/10.2174/138527210793351616
  3. M. Emmelius, G. Pawlowski, and H. W Vollmann, A ngew. Chem, Int. Ed. Engl, 28, 1445 (1989). https://doi.org/10.1002/anie.198914453
  4. T. Kololuoma, J. A .I. Oksanen, P. Raerinne, and J. T. Rantala, J. Mater. Res., 16, 2186 (2001). https://doi.org/10.1557/JMR.2001.0298
  5. T. Tani and S. Kikuchi, Photogr. Sci. Eng., 11, 129 (1967).
  6. H. Imahori, T. Umeyama, and S. Ito, Acc. Chem. Res., 42, 1809 (2009). https://doi.org/10.1021/ar900034t
  7. B. Adhikari and S. Majumdar, Prog. Polym. Sci., 29, 699 (2004). https://doi.org/10.1016/j.progpolymsci.2004.03.002
  8. J. D. Swalen, Mol. Electron, 2, 155 (1986).
  9. R. C. Haushalter and L. J. Kraus, Thin Solid Films, 102, 161 (1983). https://doi.org/10.1016/0040-6090(83)90149-9
  10. K. Y. Tomizaki, Patchanita, Thamyongkit, Robert S. Loewe, and J. S. Lindsey, Tetrahedron, 59, 1191 (2003). https://doi.org/10.1016/S0040-4020(03)00020-6
  11. L. Feiler, H. Langhals, and K. Polborn, Liebigs. Ann., 26, 1229 (1995).
  12. Y. Geerts, H. Quante, H. Platz, R. Mahrt, M. Hopmei er, A. Bőhm, and K. Mullen, J. Mater. Chem., 8, 2357 (1998). https://doi.org/10.1039/a804337j
  13. F. Nodle, J. Qu, C. Kohl, N. G. Pschirer, E. Reuther, and K. Mullen, Chem. Eur. J., 11, 3959 (2005). https://doi.org/10.1002/chem.200401177
  14. W. Lu, J. P. Gao, and Z. Y. Wang, Macromolecules, 32, 8880 (1999). https://doi.org/10.1021/ma9910538