DOI QR코드

DOI QR Code

Study on Electrical Characteristics of Hafnium Silicate Films with Low Temperature O2 Annealing

저온 Osub2 어닐링 공정을 통한 HfSixOy의 전기적 특성 개선

  • Lee, Jung-Chan (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Kwang-Sook (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Jeong, Seok-Won (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Roh, Yong-Han (School of Information and Communication Engineering, Sungkyunkwan University)
  • 이정찬 (성균관대학교 정보통신공학부) ;
  • 김광숙 (성균관대학교 정보통신공학부) ;
  • 정석원 (성균관대학교 정보통신공학부) ;
  • 노용한 (성균관대학교 정보통신공학부)
  • Received : 2011.04.04
  • Accepted : 2011.04.17
  • Published : 2011.05.11

Abstract

We investigated the effects of low temperature ($500^{\circ}C$) $O_2$ annealing on the characteristics of hafnium silicate ($HfSi_xO_y$) films deposited on a Si substrate by atomic layer deposition (ALD). We found that the post deposition annealing under oxidizing ambient causes the oxidation of residual Hf metal components, resulting in the improvement of electrical characteristics such as flat band voltage shift (${\Delta}V_{fb}$) by hysteresis without oxide capacitance reduction. We suggest that post deposition annealing under oxidizing ambient is necessary to improve the electrical characteristics of $HfSi_xO_y$ films deposited by ALD.

Keywords

References

  1. J. F. Damlencourt, O. Renault, D. Samour, A. M. Papon, C. Leroux, F. Martin, S. Marthon, M. N. Semeria, and X. Garros, Solid State Electr.., 47, 1613 (2003). https://doi.org/10.1016/S0038-1101(03)00170-9
  2. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys., 89, 5243 (2001). https://doi.org/10.1063/1.1361065
  3. A. Callegari, E. Cartier, M. Gribelyuk, H. F. Okorn-Schmidt, and T. Zabel, J. Appl. Phys., 90, 6466 (2001). https://doi.org/10.1063/1.1417991
  4. P. Punchaipetch, G. Pant, M. A. Quevedo-Lopez, C. Yao, M. El-Bouanani, M. J. Kim, R. M. Wallace, and B. E. Gnade, IEEE J. Quantum Electron., 10, 89(2004). https://doi.org/10.1109/JSTQE.2004.824109
  5. P. Punchaipetch, G. Pant, M. Quevedo-Lopez, H. Zhang, M. EI-Bouanani, M. J. Kim, R. M. Wallace, and B. E. Gnade, Thin Solid Films, 425, 68 (2003). https://doi.org/10.1016/S0040-6090(02)01306-8
  6. G. Pant, P. Punchaipetch, M. J. Kim, R. M. Wallace, and B. E. Gnade, Thin Solid Films, 460, 242 (2004). https://doi.org/10.1016/j.tsf.2004.01.109
  7. K. Yamamoto, S. Hayashi, M. Niwa, M. Asai, S. Horii, and H. Miya, Appl. Phys. Lett., 83, 2229 (2003). https://doi.org/10.1063/1.1609246
  8. H. Nakashima, D. Wang, Y. Sugimoto, Y. Suehiro, K. Yamamoto, M. Kajiwara, and K. Hirayama, Semicond. Sci. Technol., 23, 1 (2008).
  9. M. S. Jo, H. K Park, J. M. Lee, M. Chang, H. S. Jung, J. H. Lee, and H. S. Hwang, Elec. Dev. Lett., 29, 399 (2008). https://doi.org/10.1109/LED.2008.918249
  10. M. Miyamura, K. Masuzaki, H. Watanabe, N. Ikarashi, and T. Tatsumi, Jpn. J. Appl. Phys., 43, 7843 (2004). https://doi.org/10.1143/JJAP.43.7843
  11. C. W. Hsu, Y. T. Chiang, F. R. Juang, C. T. Lin, and C. M. Lai, Microelectron. Reliab., 50, 618 (2010). https://doi.org/10.1016/j.microrel.2010.01.045
  12. P. E. Blochl and J. H. Stathis, Phys. Rev. Lett., 83, 372 (1999). https://doi.org/10.1103/PhysRevLett.83.372
  13. Y. Sugimoto, H. Adachi, K. Yamamoto, D. Wang, H. Nakashima, and H. Nakashima, Mater. Sci. Semicon. Process., 9, 1031 (2006). https://doi.org/10.1016/j.mssp.2006.10.020