DOI QR코드

DOI QR Code

Performance Evaluation and Characteristic Study of the Single Anaerobic Digestion from Piggery Slurry

돈분 슬러리를 이용한 단상 혐기소화공정의 특성연구 및 성능평가

  • Park, Woo-Kyun (National Academy of Agricultural Science, Rural Development Administration) ;
  • Jun, Hang-Bae (Department of Environmental Engineering, Chungbuk National University) ;
  • Park, Noh-Back (National Academy of Agricultural Science, Rural Development Administration) ;
  • Kwon, Soon-Ik (National Academy of Agricultural Science, Rural Development Administration) ;
  • Shin, Joung-Du (National Academy of Agricultural Science, Rural Development Administration) ;
  • Hong, Seung-Gil (National Academy of Agricultural Science, Rural Development Administration)
  • 박우균 (농촌진흥청 국립농업과학원) ;
  • 전항배 (충북대학교 환경공학과) ;
  • 박노백 (농촌진흥청 국립농업과학원) ;
  • 권순익 (농촌진흥청 국립농업과학원) ;
  • 신중두 (농촌진흥청 국립농업과학원) ;
  • 홍승길 (농촌진흥청 국립농업과학원)
  • Received : 2011.03.02
  • Accepted : 2011.03.21
  • Published : 2011.03.31

Abstract

BACKGROUND: Disposal of slurry animal manure produced by an anaerobic slurry-type barn method is not easy since the animal slurry contain high moisture content which makes solid-liquid separation a difficult process. However, recently, the interest about anaerobic digestion process as an environment-friendly waste disposal method has gained a wide interest because it can treat highly organic matter contained by the piggery slurry, decrease the odor after treatment, and enable the effective recovery of the methane gas which is a valuable energy resource. The objectives of this study were to identify the solubilization characteristics and to improve the anaerobic digestion efficiency of piggery slurry through full-scale anaerobic digestion experiments. METHODS AND RESULTS: In a full-scale continuous anaerobic digestion operation, the adaptability of single anaerobic digestion and its digestion efficiency were also evaluated in the farm field. The actual pH range and alkalinity concentration of piggery slurry used during the operation were comparatively higher than the concentrations of pH and alkalinity in the digestion tank which were stable at 7.5~8.0, 4,008 mg/L (as$CaCO_3$), respectively. The removal efficiency of organic matter (TCOD) by anaerobic digestion was 75~90% and methane gas production amount was at 0.33 L/L/day, a little higher than that of ordinary animal manure. CONCLUSION(s): Our findings showed higher recovery of highly purified methane and greater efficiency of anaerobic tank digestion since its methane gas content was at 65~70%.

축산농가에서 발생되는 돈분 슬러리의 처리 능력을 평가하기 위하여 Full-scale의 단상 혐기성 소화조에서 중온소화와 고형물 체류시간을 20일로 하여 연속식으로 운전하면서 성능평가 및 특성연구를 실시하였다. 운전기간 중 알칼리도는 약 4,000 mg/L(3,500~9,000 mg/L as $CaCO_3$)이였고, 소화조내의 pH는 7.5~8.0 범위로 약간 높은 경향이었으나 pH는 안정적이었다. 바이오가스의 발생량은 OLR 1.2 $g{\cdot}COD/L{\cdot}day$에서 0.69 L/L/day의 바이오가스를 생산하였고, 제거된 COD를 바탕으로 계산된 메탄가스 발생량은 63% 수준이였다. 생산된 바이오가스 중 메탄가스 함량은 65~70%이었고, CO2는 약 30% 전후였으며, 열병합 발전을 실시하였을 때 총전력요구량의 50~75% 수준을 공급하였다. 또한 발전기 부하가 5~9 kW시 평균 1 kWh의 전력을 생산하기 위한 바이오가스 소모량은 약 1.8 $m^3$이였다. 따라서 실제 규모의 plant에서 약 500일간 운전한 결과 유입되는 돈분 슬러리의 TS 농도에 상관없이 소화조 내에 일정 농도의 유기물을 확보할 수 있었고, 바이오가스의 발생량은 일반적인 축산분뇨 가스 발생량 보다 높게 나타나 단상 혐기성 소화공정으로 고효율 처리가 가능한 것으로 나타났다.

Keywords

References

  1. APHA, 1998. Standard methods for the examination of water and wastewater, 20th ed., Washington, D.C.
  2. Bonmati, A., Flotats, X., Mateu, L. and Campos, E., 2001. Study of thermal hydrolysis as a pretreatment to mesophilic anaerobic digestion of pig slurry, Wat. Sci. Tech., 44(4), 109-116.
  3. Breure, A.M. and Van Andel, J.G., 1984. Hydrolysis and acidification fermentation of a protein gelatin in an anaerobic continuous culture, Appl. Microbiol. Biotechnol., 20(1), 40-45 https://doi.org/10.1007/BF00254644
  4. Bull, M.A., Steritt, R.M. and Lester, J.N., 1984. An evaluation of single- and separated-phase anaerobic industrial wastewater treatment in fluidized bed reactors, Biotechnol. Bioeng., 26(9), 1054-1056. https://doi.org/10.1002/bit.260260907
  5. Callaghan, F.J., Wase, D.A.J., Thayanithy, K. and Forster, C.F., 1999. Co-digestion of waste organic solids : batch studies, Bior. Technol. 67(2), 117-122. https://doi.org/10.1016/S0960-8524(98)00108-4
  6. Cavaleiro, A.J., Pereira, M.A. and Alves, M., 2008. Enhancement of methane production from long chain fatty acid based effluents, Bior. Technol. 99, 4089-4095.
  7. Fang, H.H.P., Chui, H.K., Li, Y.Y. and Chen, T., 1995. Effect of degradation kinetics on the microstructure of anaerobic biogranules, Wat. Sci. Tech., 32(8), 165-172. https://doi.org/10.1016/0273-1223(96)00021-2
  8. Frostell, B., 1982. Anaerobic fluidized bed experimentation with a molasses wastewater, Process Biochem., Nov/Dec, 37-40.
  9. Lattinga, G., Man, A.D., ven der Last, A.R.M., Wiegant, W., Frijins, J. and van Buuren, J.C.L., 1993. Anaerobic treatment of domestic sewage and wastewater, Wat. Sci. Tech., 27(9), 67-73.
  10. Lee, G.H. and Kim, J.S., 1999. Treating swine wastewater by anaerobic bioreactors, Korean J. Environ. Agric. 18(1), 54-60.
  11. Lettinga, G., van Velsen, A.F.M., Hobma, S.W., de Zeeuw, W. and Klapwijk, A., 1980. Use of the upflow sludge blank(USB) concept for biological wastewater treatment, especially for anaerobic treatment, Biotechnol. Bioeng., 22, 699-734. https://doi.org/10.1002/bit.260220402
  12. Markov, S.A., Bazin, M.J. and Hall, D.O., 1995. The potential of using cyanobacteria in photobioreactor for hydrogen production, Adv. Biochem. Eng. Biotechnol., 52, 59-86.
  13. Metcalf and Eddy, 2004. Wastewater engineering: Treatment and reuse, Fourth Edition, Mcgraw-Hill Inc.
  14. Park, N.B., Park, S.M., Choi, W.Y. and Jun, H.B., 2009. Methane production and nitrogen removal from piggery wastewater in the TPAD coupled with BNR process, Korean J Water Qual. 25(1), 18-25.
  15. Shin, H.S., Han, S.K., Song, Y.C. and Lee, C.Y., 2001. Performance of UASB reactor treating leachate from acidogenic fermenter in the two-phase anaerobic digestion of food waste, Wat. Res., 35(14), 3441-3447. https://doi.org/10.1016/S0043-1354(01)00041-0
  16. USEPA, 1997. A manual for developing biogas systems at commercial farms in the united states, Ag STAR Handbook, EPA-430-B-97-015, US Environmental Protection Agency, Atmospheric Pollution Prevention Division, Washington, D. C.
  17. Van Lier, J.B., Tilche, A., Ahring, B.K., Macarie, H., Moletta, R., Dohanyo, M., Hulshoff Pol, L.W., Lens, P. and Werstraete, W., 2001. New perspectives in anaerobic digestion, Wat. Sci. Tech., 43(1), 1-18.
  18. William, P., Barber, M. and David, C.S., 1999. The use of the anaerobic baffled reactor(ABR) for wastewater treatment, Wat. Res., 33(7), 1559-1578. https://doi.org/10.1016/S0043-1354(98)00371-6
  19. Young, J.C. and McCarty, P.L., 1969. The anaerobic filter for waste treatment, J. Water Pollut. Control Fed., 41, 160-173.

Cited by

  1. Evaluation of Swine Wastewater Pretreatment Using Anaerobic Filter vol.37, pp.7, 2015, https://doi.org/10.4491/KSEE.2015.37.7.418
  2. Effects of Antimicrobials on Methane Production in an Anaerobic Digestion Process vol.30, pp.3, 2011, https://doi.org/10.5338/KJEA.2011.30.3.295
  3. Study on Characteristics of Biogas Production and Liquid Fertilizer with Anaerobic Co digestion of Livestock Manure and Food Waste vol.44, pp.5, 2011, https://doi.org/10.7745/KJSSF.2011.44.5.895