DOI QR코드

DOI QR Code

3차원 ID-FDTD 알고리즘의 Stability Condition과 광대역 특성 분석

Analysis of Stability Condition and Wideband Characteristics of 3D Isotropic Dispersion(ID)-FDTD Algorithm

  • 김우태 (연세대학교 전기전자공학과) ;
  • 고일석 (인하대학교 전자공학과) ;
  • 육종관 (연세대학교 전기전자공학과)
  • Kim, Woo-Tae (Department of Electrical and Electronics Engineering, Yonsei University) ;
  • Koh, Il-Suek (Department of Electroic Engineering, Inha University) ;
  • Yook, Jong-Gwan (Department of Electrical and Electronics Engineering, Yonsei University)
  • 심사 : 2011.03.31
  • 발행 : 2011.04.30

초록

본 논문에서는 등방성(isotropic) 특성과 작은 분산 오차(low dispersion error)를 갖는 3차원 등방성 시간 영역 유한 차분법(ID-FDTD: Isotropic Dispersion Finite Difference Time Domain) 방법의 stability condition과 광대역 해석 특성에 대해 논의하였다. 3차원 ID-FDTD 방법은 기존의 Yee FDTD 방법의 비등방성 특성과 큰 분산 오차를 개선하기 위해 제안되었다. 기존 연구에서는 3차원 ID-FDTD 방법의 stability condition을 수치적으로 계산하였지만, 이에 대한 검증이 충분히 이뤄지지 않은 상태이다. 이에 본 논문에서는 단일 주파수와 광대역 주파수 신호를 입력원으로 한 모의 실험 환경에서 3차원 ID-FDTD 방법의 stability condition 검증을 수행하였다. 또한 광대역 특성에 대해 3차원 ID-FDTD 방법과 유사한 알고리즘들을 비교 분석해 해보았고, 마지막으로 3D ID-FDTD을 적용하여 대형 크기 구 모델에 대해 radar cross section(RCS) 해석을 수행함으로써, 실질적 해석을 통한 알고리즘 검증 및 분석을 마무리 하였다.

The stability condition and wideband characteristics of 3D ID-FDTD algorithm which has low dispersion error with isotropic dispersion are presented in this paper. 3D ID-FDTD method was proposed to improve the defect of the Yee FDTD such as the anisotropy and large dispersion error. The published paper calculated the stability condition of 3D ID-FDTD algorithm by using numerical method, however, it is thought that the examples were not sufficient to verify the stability condition. Thus, in this paper, various simulations are included in order to hold reliability under the conditions that the plane wave propagation is assumed with a single frequency and a wideband frequency. Also, the 3D ID-FDTD algorithm is compared to those that have the similar FDTD algorithm with ID-FDTD such as Forgy's method and non-standard FDTD method in a wideband. Finally, the radar cross section(RCS) for the large sphere with high dielectric constant is calculated.

키워드

참고문헌

  1. K. Yee, "Numerical solution of inital boundary value problems involving Maxwell's equations in isotropic media", IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1966. https://doi.org/10.1109/TAP.1966.1138693
  2. A. Taflove, S. Hagness, ComputationaL Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Edn. Norwood, MA: Artech House, 2005.
  3. T. Martin, "An improved near-to far-zone transformation for the finite-difference time-domain method", IEEE Transactions on Antennas and Propagation, vol. 46, no. 9, pp. 1263-1271, 1998. https://doi.org/10.1109/8.719968
  4. J. Fang, "Time domain finite difference computation for Maxwell's equations", Ph. D. dissertation, Univ. California, Berkeley, CA, 1989.
  5. E. Forgy, W. Chew, "A time-domain method with isotropic dispersion and increased stability on an overlapped lattice", IEEE Transactions on Antennas and Propagation, vol. 50, no. 7, pp. 983-996, 2002. https://doi.org/10.1109/TAP.2002.801373
  6. J. Cole, "A high accuracy FDTD algorithm to solve microwave propagation and scattering problems on a coarse grid", IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 9 Part 1, pp. 2053-2058, 1995. https://doi.org/10.1109/22.414540
  7. J. Cole, "A high-accuracy realization of the Yee algorithm using non-standard finite differences", IEEE transactions on Microwave Theory and Techniques, vol. 45, no. 6, pp. 991-996, 1997. https://doi.org/10.1109/22.588615
  8. J. Cole, "High-accuracy Yee algorithm based on non-standard finite differences: new developments and verifications", IEEE Transactions on Antennas and Propagation, vol. 50, no. 9, pp. 1185-1191, 2002. https://doi.org/10.1109/TAP.2002.801268
  9. I. Koh, H. Kim, J. Lee et al., "Novel explicit 2-D FDTD scheme with isotropic dispersion and enhanced stability", IEEE Transactions on Antennas and Propagation, vol. 54, no. 11 Part 2, pp. 3505-3510, 2006. https://doi.org/10.1109/TAP.2006.884288
  10. I. Koh, H. Kim, and J. Yook, "New scaling factors of 2-D isotropic-dispersion finite difference time domain(ID-FDTD) algorithm for lossy media", IEEE Transactions on Antennas and Propagation, vol. 56, no. 2, pp. 613-617, 2008. https://doi.org/10.1109/TAP.2007.915481
  11. W. Kim, I. Koh, and J. Yook, "3D isotropic dispersion(ID)-FDTD algorithm: update equation and characteristics analysis", IEEE Transactions Antennas and Propagation, vol. 58, no. 4, pp. 1251-1259, 2010. https://doi.org/10.1109/TAP.2010.2041311
  12. K. Shlager, J. Maloney, S. Ray et al., "Relative accuracy of several finite-difference time-domain methods in two and three dimensions", IEEE Transactions on Antennas and Propagation, vol. 41, no. 12, pp. 1732-1737, 1993. https://doi.org/10.1109/8.273296
  13. K. Shlager, J. Schneider, and S. Lockheed-Martin, "Comparison of the dispersion properties of several low-dispersion finite-difference time-domain algorithms", IEEE Transactions on Antennas and Propagation, vol. 51, no. 3, pp. 642-653, 2003. https://doi.org/10.1109/TAP.2003.808532
  14. Z. Bi, K. Wu, C. Wu et al., "A new finite-difference time-domain algorithm for solving Max well's equations", IEEE Microwave and Guided Wave Letters, vol. 1, no. 12, pp. 382-384, 1991. https://doi.org/10.1109/75.103858
  15. N. Morita, N. Kumagai, and J. Mautz, Integral Equation Methods for Electromagnetics: Artech House Boston, 1990.
  16. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., vol. 114, pp. 185-200, Oct. 1994. https://doi.org/10.1006/jcph.1994.1159

피인용 문헌

  1. Optimum scaling factors for one-dimensional finite-difference time-domain scheme in Maxwell-Boltzmann system vol.25, pp.5-6, 2012, https://doi.org/10.1002/jnm.1841
  2. Extremely Low Dispersion Higher Order (2,4) 2-D-FDTD Scheme for Maxwell-Boltzmann System vol.61, pp.12, 2013, https://doi.org/10.1109/TAP.2013.2281363