DOI QR코드

DOI QR Code

Antioxidative and Hypoglycemic Effects of Silk Fibroin/SericinMixtures in High Fat-Fed Mice

  • Seo, Chung-Won (Department of Food Science and Nutrition, Kyungpook National University) ;
  • Um, In-Chul (Department of Natural Fiber Science, Kyungpook National University) ;
  • Rico, Catherine W. (Department of Food Science and Nutrition, Kyungpook National University) ;
  • Kang, Mi-Young (Department of Food Science and Nutrition, Kyungpook National University)
  • Received : 2011.05.18
  • Accepted : 2011.08.04
  • Published : 2011.09.30

Abstract

The effect of dietary feeding of silk fibroin/sericinmixtureson the antioxidative status and glucose metabolism in high fat-fed mice was investigated. The mice weregiven experimental diets for 6 weeks: normal control (NC),high fat (HF) andhigh fat supplemented with F100 (pure fibroin, HF-F100), F81 (81:19 fibroin-sericin, w/w, HF-F81) or F50 (50:50 fibroin-sericin, w/w, HF-F50). The silk protein-fed mice showed decreased lipid peroxidation, enhancedantioxidant enzymesactivities and lower blood glucose level relative to HF group. The HF-F50 animals exhibited significantly lower insulin level, higher glycogen concentration, enhanced hepatic glucokinaseactivity and reduced glucose-6-phosphate and phosphoenolpyruvatecarboxynaseactivities than the HF ones. The $in$ $vivo$ antioxidant activity and hypoglycemic action tended to increase with increased amount of sericin and decreased fibroin content in the diet. These findings demonstrate that silk protein, particularly sericin, may be beneficial in suppressing high fat diet-induced hyperglycemiaand oxidative stress.

Keywords

References

  1. Aebi H (1974) Catalase; in Method of Enzymatic Analysis. Bergmeyer HU (ed), pp 673-684, Academic Press, New York.
  2. Alegre M, Ciudad CJ, Fillat C, Guinovart JJ (1988) Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Anal Biochem 173, 185- 189. https://doi.org/10.1016/0003-2697(88)90176-5
  3. Alsaif MA, Duwaihy MMS (2004) Influence of dietary fat quantity and composition on glucose tolerance and insulin sensitivity in rats. Nutr Res 24, 417-425. https://doi.org/10.1016/j.nutres.2003.11.011
  4. Amrani A, Durant S, Throsby M, Coulaud J, Dardenne M, Homo-Delarche F (1998) Glucose homeostasis in the nonobese diabetic mouse at the prediabetic stage. Endoctrinology 139, 1115-1124. https://doi.org/10.1210/en.139.3.1115
  5. Bentle LA, Lardy HA (1976) Interaction of anions and divalent metal ions with phosphoenolpyruvatecarboxykinase. J Biol Chem 251, 2916-2921.
  6. Bradford MM (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  7. Bray GA, Paeratakul S, Popkin BM (2004) Dietary fat and obesity: a review of animal, clinical and epidemiological studies. Physiol Behav 83, 549-555. https://doi.org/10.1016/j.physbeh.2004.08.039
  8. Coope GJ, Atkinson AM, Allott C, McKerrecher D, Johnstone C, Pike KG, Holme PC, Vertigan H, Gill D, Coghlan MP, Leighton B (2006) Predictive blood glucose lowering efficacy by glucokinase activators in high fat fed female zucker rats. Br J Pharmacol 149, 328-335. https://doi.org/10.1038/sj.bjp.0706848
  9. Davidson AL, Arion WJ (1987) Factors underlying significant underestimations of glucokinase activity in crude liver extracts: physiological implications of higher cellular activity. Arch Biochem Biophys 253, 156-167. https://doi.org/10.1016/0003-9861(87)90648-5
  10. Davidson AL, Arion WJ (1987) Factors underlying significant underestimations of glucokinase activity in crude liver extracts: physiological implications of higher cellular activity. Arch Biochem Biophys 253, 156-167. https://doi.org/10.1016/0003-9861(87)90648-5
  11. Fan JB, Wu LP, Chen LS, Mao XY, Ren FZ (2009) Antioxidant activities of silk sericin from silkworm Bombyxmori. J Food Biochem 33, 74-88. https://doi.org/10.1111/j.1745-4514.2008.00204.x
  12. Friedman JE, Sun Y, Ishizuka T, Farrell CJ, McCormack SE, Herron LM, Hakimi P, Lechner P, Yun JS (1997) Phosphoenolpyruvatecarboxykinase (GTP) gene transcription and hyperglycemia are regulated by glucocorticoids in genetically obese db/db transgenic mice. J Biol Chem 272, 31475- 31481. https://doi.org/10.1074/jbc.272.50.31475
  13. Hong JH, Cha YS, Rhee SJ (2009) effects of the cellcultured Acanthopanaxsenticosus extract on antioxidative defense system and membrane fluidity in the liver of type 2 diabetes mouse. J Clin Biochem Nutr 45, 101-109. https://doi.org/10.3164/jcbn.08-263
  14. Hong S, Park K, Suh B, Do M, Hyun C (2002) Effect of silk fibroin hydrolysate on adipocyte metabolism in db/db mice. Korean J Pharmacogn 33, 312-318.
  15. Hulcher FH, Oleson WH (1973) Simplified spectrophotometric assay for microsomal 3-hydroxy-3-methylglutaryl CoA reductase by measurement of coenzyme A. J Lipid Res 14, 625-631.
  16. Hyun CK, Kim IY, Frost SC (2004) Soluble fibroin enhances insulin sensitivity and glucose metabolism in 3T3-L1 adipocytes. J Nutr 134, 3257-3263. https://doi.org/10.1093/jn/134.12.3257
  17. Inzucchi SE (2002) Oral antihyperglycemic therapy for type 2 diabetes: scientific review. J Am Med Assoc 287, 360-372. https://doi.org/10.1001/jama.287.3.360
  18. Kaneto H, Kajimoto Y, Miyagawa J, Matsuoka T, Fujitani Y, Umayahara Y, Hanafusa T, Matsuzawa Y, Yamasaki Y, Hori M (1999) Beneficial effects of antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose toxicity. Diabetes 48, 2398-2406. https://doi.org/10.2337/diabetes.48.12.2398
  19. Kato N, Sato S, Yamanaka A, Yamadam H, Fuwam N, Nomura M (1998) Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci Biotechnol Biochem 62, 145-147. https://doi.org/10.1271/bbb.62.145
  20. Lelli SM, San LC, Viale MD, Mazzetti MB (2005) Response of glucose metabolism enzymes in an acute porphyria model role of reactive oxygen species. Toxicology 216, 49-58. https://doi.org/10.1016/j.tox.2005.07.016
  21. Mackness MI, Arrol S, Durrington PN (1991) Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett 286, 152-154. https://doi.org/10.1016/0014-5793(91)80962-3
  22. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and convenient assay for superoxide dismutase. Eur J Biochem 47, 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  23. McGill M, Felton AM (2007) New global recommendations: a multidisciplinary approach to improving outcomes in diabetes. Prim Care Diabetes 1, 49-55. https://doi.org/10.1016/j.pcd.2006.07.004
  24. Mize CE, Langdon RG (1952) Hepatic glutathione reductase, purification and general kinetic properties. J Biol Chem 237, 1589-1595.
  25. Mondal M, Trivedy K, Kumar SN (2007) The silk proteins, sericin and fibroin in silkworm, BombyxmoriLinn.,-areview. Caspian J Environ Sci 5, 63-76.
  26. Nahm JH, Oh YS (1995) A study on the pharmacological effect of silk fibroin. Agric Sci 37, 145-157.
  27. Ng CJ, Shih DM, Hama SY, Villa N, Navab M, Reddy ST (2005) The paraoxonase gene family and atherosclerosis. Free Radic Biol Med 38, 153-163. https://doi.org/10.1016/j.freeradbiomed.2004.09.035
  28. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95, 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  29. Okazaki Y, Kakehi S, Xu Y, Tsujimoto K, Sasaki M, Ogawa H, Kato N (2010) Consumption of sericin reduces serum lipids, ameliorates glucose tolerance and elevates serum adiponectin in rats fed a high-fat diet. Biosci Biotechnol Biochem 74, 1534-1538. https://doi.org/10.1271/bbb.100065
  30. Paglia ED, Valentine WN (1967) Studies on quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70, 158-169.
  31. Reiter RJ, Tan D, Burkhardt S (2002) Reactive oxygen and nitrogen species and cellular and organismal decline:amelioration with melatonin. Mech Aging Dev 123, 1007-1019. https://doi.org/10.1016/S0047-6374(01)00384-0
  32. Reiter RJ, Tan D, Burkhardt S (2002) Reactive oxygen and nitrogen species and cellular and organismal decline:amelioration with melatonin. Mech Aging Dev 123, 1007-1019. https://doi.org/10.1016/S0047-6374(01)00384-0
  33. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87, 4-14. https://doi.org/10.1016/j.diabres.2009.10.007
  34. Zhaorigetu S, Sasaki M, Watanabe H, Kato N (2001) Supplemental silk protein, sericin, suppresses colon tumorigenesis in 1,2-dimethylhydrazine-treated mice by reducing oxidative stress and cell proliferation. Biosci Biotechnol Biochem 65, 2181-2186. https://doi.org/10.1271/bbb.65.2181
  35. Zhaorigetu S, Sasaki M, Kato N (2007) Consumption of sericin suppresses colon oxidative stress and aberrant crypt foci in 1,2-dimethylhydrazine-treated rats by colon undigested sericin. J Nutr Sci Vitaminol 53, 297-300. https://doi.org/10.3177/jnsv.53.297

Cited by

  1. Structure and properties of silk sericin obtained from different silkworm varieties vol.30, pp.2, 2015, https://doi.org/10.7852/ijie.2015.30.2.81
  2. The potential of silk sericin protein as a serum substitute or an additive in cell culture and cryopreservation vol.49, pp.6, 2017, https://doi.org/10.1007/s00726-017-2396-3
  3. Chromium(VI) Adsorption Behavior of Silk Sericin Beads vol.26, pp.1, 2013, https://doi.org/10.7852/ijie.2013.26.1.047
  4. Effect of degumming ratio on wet spinning and post drawing performance of regenerated silk vol.67, 2014, https://doi.org/10.1016/j.ijbiomac.2014.03.055