Acknowledgement
Supported by : Japan Society for the Promotion of Science (JSPS)
References
- Abrams, D., Smith, T., Lynch, J. and Franklin, S. (2007), "Effectiveness of rehabilitation on seismic behavior of masonry piers", J. Struct. Eng. - ASCE, 133(1), 32-43. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:1(32)
- Araki, Y., Endo, T., Omori, T., Sutou, Y., Koetaka, Y., Kainuma, R. and Ishida, K. (2010), "Potential of superelastic Cu-Al-Mn alloy bars for seismic applications", Earthq. Eng. Struct. Dyn., 40(1), 107-115.
- ASTM (2007), Annual book of ASTM standards. Section four, construction, volume 04.05, chemical-resistant nonmetallic materials; vitrified clay pipe; concrete pipe; fiber-reinforced cement products; mortars and grouts; masonry; precast concrete, ASTM International, West Conshohocken, PA.
- Button, M.R. and Mayes, R.L. (1992), "Out-of-plane seismic response of reinforced masonry walls", J. Struct. Eng. - ASCE, 118(9), 2495-2513. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:9(2495)
- Christis, Z.C., Andreas, S., Themos, D. and Karim, H. (2008), "Application of shape memory alloy prestressing devices on an ancient aqueduct", Smart Struct. Syst., 4(2), 261-278. https://doi.org/10.12989/sss.2008.4.2.261
- DesRoches, R. and Smith, B. (2004), "Shape memory alloys in seismic resistant design and retrofit: a critical review of their potential and limitations", J. Earthq. Eng., 8(3), 415-429.
- DIANA (2008), DIANA user's manual release 9.3, TNO DIANA BV, Delft, The Netherlands.
- Ehsani, M.R., Saadatmanesh, H. and Velazquez-Dimas, J.I. (1999), "Behavior of retrofitted URM walls under simulated earthquake loading", J. Compos. Constr., 3(3), 134-142. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(134)
- El-Borgi, S., Neifar, M., Ben, J. M., Cherif, D. and Smaoui, H. (2008), "Use of copper shape memory alloys in retrofitting historical monuments", Smart Struct. Syst., 4(2), 247-260. https://doi.org/10.12989/sss.2008.4.2.247
- ElGawady, M.A., Lestuzzi, P. and Badoux, M. (2004), "A review of conventional seismic retrofitting techniques for URM", Proceedings of 13th International Brick and Block Masonry conference, Amsterdam, Netherland, July.
- Eurocode 8 (2004), Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings, EN 1998-1:2004, European Committee for Standardization, Brussels.
- Griffith, M.C., Lam, N.T.K., Wilson, J.L. and Doherty, K. (2004), "Experimental investigation of unreinforced brick masonry walls in flexure", J. Struct. Eng. - ASCE, 130(3), 423-432. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(423)
- Indirli, M., Castellano, M., Clemente, P. and Martelli, A. (2001), "Demo-application of shape memory alloy devices: the rehabilitation of the S. Giorgio Church Bell-Tower", Proceedings of SPIE, California, March.
- Karantoni, F.V. and Fardis, M.N. (1992), "Effectiveness of seismic strengthening techniques for masonry buildings", J. Struct. Eng. - ASCE, 118(4), 1884-1902. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:7(1884)
- Lourenco, P.B. and Rots, J.G. (1997), "Multisurface interface model for analysis of masonry structures", J. Struct. Eng. - ASCE, 123(7), 660-668. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(660)
- Mazzolani, F.M. and Mandara, A. (2002), "Modern trends in the use of special metals for the improvement of historical and monumental structures", Eng. Struct., 24(7), 843-856. https://doi.org/10.1016/S0141-0296(02)00023-8
- Martelli, A. (2008), "Recent progress of application of modern anti-seismic systems in Europe - Part 2: energy dissipation systems, shape memory alloy devices and shock transmitters", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
- Oliveira, D.V., Lourenco, P.B. and Roca, P. (2006), "Cyclic behaviour of stone and brick masonry under uniaxial compressive loading", Mater. Struct., 39(2), 247-257.
- Paret, T.F., Freeman, S.A., Searer, G.R., Hachem, M. and Gilmartin, U.M. (2008), "Using traditional and innovative approaches in the seismic evaluation and strengthening of a historic unreinforced masonry synagogue", Eng. Struct., 30, 2214-2126.
- Plecnik, J., Cousins, T. and O'conner, E. (1986), "Strengthening of unreinforced masonry buildings", J. Struct. Eng. - ASCE, 112(5), 1070-1087. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:5(1070)
- RILEM (1994), RILEM Technical recommendations for the testing and use of construction materials, Taylor & Francis, New York.
- Song, G., Ma, N. and Li, H.N. (2006), "Applications of shape memory alloys in civil structures", Eng. Struct., 28, 1266-1274. https://doi.org/10.1016/j.engstruct.2005.12.010
- Sutou, Y., Omori, T., Wang, J.J., Kainuma, R. and Ishida, K. (2003), "Effect of grain size and texture on superelasticity of Cu-Al-Mn-based shape memory alloys", J. Phys. IV, 112, 511-514.
- Sutou, Y., Omori, T., Yamauchi, K., Ono, N., Kainuma, R. and Ishida, K. (2005), "Effect of grain size and texture on pseudoelasticity in Cu-Al-Mn-based shape memory wire", ACTA Mater., 53(15), 4121-4133. https://doi.org/10.1016/j.actamat.2005.05.013
- Tomazevic, M. (1995), Earthquake-resistant design of masonry buildings, Imperial College Press, London.
- Willis, C.R., Seracino, R. and Griffith, M.C. (2010), "Out-of-plane strength of brick masonry retrofitted with horizontal NSM CFRP strips", Eng. Struct., 32(2), 547-555. https://doi.org/10.1016/j.engstruct.2009.10.015
Cited by
- Effectiveness of superelastic bars for seismic rehabilitation of clay-unit masonry walls vol.42, pp.5, 2013, https://doi.org/10.1002/eqe.2241
- Effect of grain size on stress induced martensitic transformations in a Cu–Al–Be polycrystalline shape-memory alloy. Pseudoelastic cycling effects and microstructural modifications vol.609, 2014, https://doi.org/10.1016/j.msea.2014.05.018
- Response evaluation of historical crooked minaret under wind and earthquake loadings vol.17, pp.3, 2013, https://doi.org/10.12989/was.2013.17.3.345
- Two- and Three-Dimensional Grain Growth in the Cu–Al–Mn Shape Memory Alloy vol.54, pp.10, 2013, https://doi.org/10.2320/matertrans.M2013167
- Pinning retrofit technique in masonry with application of polymer-cement pastes as bonding agents vol.5, pp.4, 2013, https://doi.org/10.12989/eas.2013.5.4.477
- Feasibility of Cu–Al–Mn superelastic alloy bars as reinforcement elements in concrete beams vol.22, pp.2, 2013, https://doi.org/10.1088/0964-1726/22/2/025025
- Evaluation of masonry minarets collapsed by a strong wind under uncertainty vol.76, pp.2, 2015, https://doi.org/10.1007/s11069-014-1531-7
- Superelastic anisotropy characteristics of columnar-grained Cu–Al–Mn shape memory alloys and its potential applications vol.85, 2015, https://doi.org/10.1016/j.matdes.2015.06.114
- SMA bending bars as self-centering and damping devices vol.28, pp.2, 2019, https://doi.org/10.1088/1361-665X/aaf5e3
- Seismic performance upgrading of substandard RC frames using shape memory alloy bars vol.28, pp.8, 2011, https://doi.org/10.1088/1361-665x/ab28f6
- Experimental Evaluation of Full-Scale URM Buildings Strengthened Using Surface-Mounted Steel Bands vol.147, pp.2, 2011, https://doi.org/10.1061/(asce)st.1943-541x.0002919
- Application of Shape Memory Alloys in Retrofitting of Masonry and Heritage Structures Based on Their Vulnerability Revealed in the Bam 2003 Earthquake vol.14, pp.16, 2011, https://doi.org/10.3390/ma14164480