Acknowledgement
Supported by : National Science Foundation (NSF)
References
- Avrami, M. (1939), "Kinetics of phase change I", J. Chem. Phys., 7, 1103-1112. https://doi.org/10.1063/1.1750380
- Avrami, M. (1940), "Kinetics of phase change II", J. Chem. Phys., 8, 212-224. https://doi.org/10.1063/1.1750631
- Bentz, D. (1997), "Three dimensional computer simulation of portland cement hydration and microstructure development", J. Am. Ceram. Soc., 80, 3-21. https://doi.org/10.1111/j.1151-2916.1997.tb02785.x
- Bentz, D. (2006), "Influence of water-to-cement ratio on hydration kinetics: simple models based on spatial considerations", Cement Concrete Res., 36(2), 238-244. https://doi.org/10.1016/j.cemconres.2005.04.014
- Bezjak, A. (1980), "On the determination of rate constants for hydration processes in cement pastes", Cement Concrete Res., 10, 553-563. https://doi.org/10.1016/0008-8846(80)90099-X
- Bezjak, A. (1983), "Kinetics analysis of cement hydration including various mechanistic concepts. I Theoretical development", Cement Concrete Res., 13, 305-318. https://doi.org/10.1016/0008-8846(83)90029-7
- Biernacki, J. and Xie, T. (2011), "An advanced single particle model for C3S and alite hydration", J. Am. Ceram. Soc., 94(7), 2037-2047. https://doi.org/10.1111/j.1551-2916.2010.04352.x
-
Bishnoi, S. and Scrivener, K. (2009a), "Studying nucleation and growth kinetics of alite hydration using
${\mu}ic$ ", Cement Concrete Res., 39, 849-860. https://doi.org/10.1016/j.cemconres.2009.07.004 -
Bishnoi, S. and Scrivener, K. (2009b),
${\mu}ic$ : A new platform for modeling the hydration of cements", Cement Concrete Res., 39, 266-274. https://doi.org/10.1016/j.cemconres.2008.12.002 -
Brown, P.W., Franz, E., Frohnsdorff, G. and Taylor, H.F.W. (1984), "Analyses of the aqueous phase during early
$C_3S$ hydration", Cement Concrete Res., 14, 257-262. https://doi.org/10.1016/0008-8846(84)90112-1 - Brown, P.W. (1985), "A kinetic model for the hydration of tricalcium silicate", Cement Concrete Res., 15, 35-41. https://doi.org/10.1016/0008-8846(85)90006-7
- Brown, P. (1989), "Effect of particle size distribution on the kinetics of hydration of tricalcium silicate", J. Am. Ceram. Soc., 72(10), 1829-1832. https://doi.org/10.1111/j.1151-2916.1989.tb05986.x
- Brouwers, H.J.H. (2004), "The work of powers and brownyard revisited - Part 1", Cement Concrete Res., 34(9), 1697-1716. https://doi.org/10.1016/j.cemconres.2004.05.031
- Bullard, J. (2007), "Approximate rate constants for non-ideal diffusion and their application in a stochastic model", J. Phys. Chem., 111, 2084-2092. https://doi.org/10.1021/jp0658391
- Bullard, J. (2008), "A determination of hydration mechanisms for tricalcium silicate using a kinetic cellular automaton model", J. Am. Ceram. Soc., 91(7), 2088-2097. https://doi.org/10.1111/j.1551-2916.2008.02419.x
- Bullard, J.W., Jennings, H.M., Livingston, R.A., Nonat, A., Scherer, G.W., Schweitzer, J.S. and Scrivener, K.L. (2011), "Mechanisms of cement hydration at early ages", Cement Concrete Res., 41(12), 1208-1223. https://doi.org/10.1016/j.cemconres.2010.09.011
- Cahn, J. (1956), "The kinetics of grain boundary nucleated reaction", Acta Metall., 4, 449-459. https://doi.org/10.1016/0001-6160(56)90041-4
- Evans, J.W. and De Jonghe, L.C. (1991), The production of inorganic materials, Macmillan Publishing Co., New York, 541.
- Garboczi, E.J. and Bentz, D.P. (1991), Fundamental computer simulation models for cement-based materials, J. Skalny, S. Mindess (Eds.), Materials Science of Concrete II, American Ceramic Society, Westerville, OH, 249-273.
- Garrault, S. and Nonat, A. (2001), "Hydration layer formation on tricalcium and dicalcium silicate sufaces: experimental study and numerical simulation", Langmuir, 17, 8131-8138. https://doi.org/10.1021/la011201z
- Gartner, E.M. (1997), "A proposed mechanism for the growth of C-S-H during the hydration of tricalcium silicate", Cement Concrete Res., 27(5), 665-672. https://doi.org/10.1016/S0008-8846(97)00049-5
- Ginstling, A. and Brounshtein, B. (1950), "Concerning the diffusion kinetics of reactions in spherical particles", J. Appl. Chem., USSR, 23, 1327-1338.
- Jander, V. (1927), "Reaktionen im festen zustande bei hoheren temperaturen", Z. Anorg. Allg. Chem., 163, 1-30. https://doi.org/10.1002/zaac.19271630102
- Jennings, H.M. and Johnson, S.K. (1986), "Simulation of microstructure development during the hydration of a cement compound", J. Am. Ceram. Soc., 69(11), 790-795. https://doi.org/10.1111/j.1151-2916.1986.tb07361.x
- Johnson, W.A. and Mehl, R.F. (1939), "Reaction kinetics in processes of nucleation and growth", Trans. AIME 135, 416-441.
- Kolmogorov, A.N. (1937), "k, Statisticheskoi teori kristallizatsii metallov", Izv. Akad. Nayuk CCCR, 2, 355-359.
- Kondo, R. and Kodama, M. (1967), "On the hydration kinetics of cement", Semento Gijutsu Nenpo, 21, 77-82.
- Knudsen, T. (1984), "The dispersion model for hydration of Portland cement I general concepts", Cement Concrete Res., 14, 622-630. https://doi.org/10.1016/0008-8846(84)90024-3
- Livingston, R.A. (2000), "Fractal nucleation and growth model for the hydration of tricalcium silicate", Cement Concrete Res., 39, 1853-1860.
- Navi, P. (1999), "Effects of cement size distribution on capillary pore structure of the simulated cement paste", Comput. Mater. Sci., 16, 285-293. https://doi.org/10.1016/S0927-0256(99)00071-3
- Nonat, A. (2005), "Modeling hydration and setting of cement", Ceramics, 92, 247-257.
- Pignat, C. (2005), "Simulation of cement paste microstructure hydration, pore space characterization and permeability determination", Mater. Struct., 38, 459-466. https://doi.org/10.1007/BF02482142
- Pommersheim, J.M., Clifton, J.R. and Frohnsdorff, G.J. (1982), "Mathematical modeling of tricalcium silicate hydration", Cement Concrete Res., 12, 765-772. https://doi.org/10.1016/0008-8846(82)90040-0
- Pommersheim, J.M. (1985), "A kinetic model for the hydration of tricalcium silicate", Cement Concrete Res., 15, 35-41. https://doi.org/10.1016/0008-8846(85)90006-7
- Pommersheim, J.M. (1987), "Effect of particle size distribution on hydration kinetics", Mater. Res. Soc. Symp. Proc., 85, 301-306.
- Taplin, J. (1968), "On the hydration kinetics of hydraulic cements", Proc. Fifth. Intern. Symp. Chem. Cem, Tokyo, 337-348.
- Taplin, J. (1972), "Steady-state kinetic model for solid-fluid reactions", J. Chem. Phys., 59, 194-199.
- Thomas, J.J. (2007), "A new approach to modeling the nucleation and growth kinetics of tricalcium silicate hydration", J. Am. Ceram. Soc., 90(10), 3282-3288. https://doi.org/10.1111/j.1551-2916.2007.01858.x
-
Thomas, J. (2009), "Hydration kinetics and microstructure development of normal and
$CaCl_2$ -accelerated tricalcium silicate pastes", J. Phys. Chem., 113(46), 19836-1984. - Thomas, J.J., Bierancki, J.J., Bullard, J.W., Bishnoi, S., Dolado, J.S., Scherer, G.W. and Luttge, A. (2010), "Modeling and simulation of cement hydration kinetics and microstructure development", Cement Concrete Res., 41(12), 1257-1278.
- van Breugel, K. (1995), "Numerical simulation of hydration and microstructural development in hardening cement-based materials (1) theory", Cement Concrete Res., 25(2), 319-331. https://doi.org/10.1016/0008-8846(95)00017-8
- van Breugel, K. (1995), "Numerical simulation of hydration and microstructural development in hardening cement-based materials (2) applications", Cement Concrete Res., 25(3), 522-530. https://doi.org/10.1016/0008-8846(95)00041-A
Cited by
- The effect of water-to-cement ratio on the hydration kinetics of tricalcium silicate cements: Testing the two-step hydration hypothesis vol.42, pp.8, 2012, https://doi.org/10.1016/j.cemconres.2012.05.009
- Development of Carbon Nanotube Modified Cement Paste with Microencapsulated Phase-Change Material for Structural–Functional Integrated Application vol.16, pp.12, 2015, https://doi.org/10.3390/ijms16048027
- Study on functional and mechanical properties of cement mortar with graphite-modified microencapsulated phase-change materials vol.105, 2015, https://doi.org/10.1016/j.enbuild.2015.07.043
- Creep and shrinkage effects in service stresses of concrete cable-stayed bridges vol.13, pp.4, 2014, https://doi.org/10.12989/cac.2014.13.4.483
- An advanced single-particle model for C3S hydration - validating the statistical independence of model parameters vol.15, pp.6, 2015, https://doi.org/10.12989/cac.2015.15.6.989
- Growth of Calcium Hydroxide Islands in Tricalcium Silicate-Based Cements at Early Age vol.95, pp.9, 2012, https://doi.org/10.1111/j.1551-2916.2012.05259.x
- A Multi-Ionic Continuum-Based Model for C3S Hydration vol.98, pp.10, 2015, https://doi.org/10.1111/jace.13703
- Modeling cement hydration by connecting a nucleation and growth mechanism with a diffusion mechanism. Part II: Portland cement paste hydration vol.23, pp.6, 2016, https://doi.org/10.1515/secm-2013-0259
- Modeling cement hydration by connecting a nucleation and growth mechanism with a diffusion mechanism. Part II: Portland cement paste hydration vol.23, pp.6, 2016, https://doi.org/10.1515/secm-2013-0259
- A new hydration kinetics model of composite cementitious materials, part 1: Hydration kinetic model of Portland cement vol.103, pp.3, 2011, https://doi.org/10.1111/jace.16845