References
- Cevik, A. and Guzelbey, I. (2008), "Neural network modeling of strength enhancement for CFRP confined concrete cylinders", Build. Environ., 43, 751-763. https://doi.org/10.1016/j.buildenv.2007.01.036
- Chuang, P.H., Goh, A.T.C. and Wu, X. (1998), "Modeling the capacity of pin-ended slender reinforced concrete columns using neural networks", J. Struct. Eng. - ASCE, 124(7), 830-838. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:7(830)
- De Lorenzis, L. and Tepfers, R. (2003), "A comparative study of models on confinement of concrete cylinders with fiber-reinforced polymers composites", J. Compos. Constr. - ASCE, 7(3), 219-237. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(219)
- Hoshikuma, J., Kawashima, K., Nagaya, K. and Taylor, A.W. (1997), "Stress-strain model for confined reinforced concrete in bridge piers", J. Struct. Eng. - ASCE, 123(5), 624-633. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(624)
- Hosotani, M. and Kawashima, K. (1999), "A stress-strain model for concrete cylinders confined by both carbon fiber sheets and tie reinforcement", J. Concrete Eng. - JSCE, 620(43), 25-42. (in Japanese)
- Karabinis, A.I. and Rousakis, T.C. (2002), "Concrete confined by FRP material: a plasticity approach", Eng. Struct., 24, 923-932. https://doi.org/10.1016/S0141-0296(02)00011-1
- Li, Y.F., Lin, C.T. and Sung, Y.Y. (2003), "A constitutive model for concrete confined with carbon fiber reinforced plastics", Mech. Mater., 35, 603-619. https://doi.org/10.1016/S0167-6636(02)00288-0
- Li, Y.F. and Fang, T.S. (2004), "A constitutive model for concrete confined by steel reinforcement and carbon fiber reinforced plastic sheet", Struct. Eng. Mech., 18(1), 21-40 https://doi.org/10.12989/sem.2004.18.1.021
- Mander, J.B., Priestley, M.J.N. and Park, R. (1998a), "Theoretical stress-strain model for confined concrete", J. Struct. Eng. - ASCE, 114(8), 1805-1826.
- Mander, J.B., Priestley, M.J.N. and Park, R. (1998b), "Observed stress-strain behavior of confined concrete", J. Struct. Eng. - ASCE, 114(8), 1827-1849.
- Miyauchi, K., Nishibayashi, S. and Inoue, S. (1997), "Estimation of strengthening effects with carbon fiber sheet for concrete column", Proc. FRPRCS-3, Sapporo, Japan, Vol. 1, 217-224.
- Oreta, A. and Kawashima, K. (2003), "Neural network modeling of confined compressive strength and strain of circular concrete columns", J. Struct. Eng. - ASCE, 129(4), 554-561. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(554)
- Rousakis, T. (2001), "Experimental investigation of concrete cylinders confined by carbon FRP sheets, under monotonic and cyclic axial compressive load", Research Rep., Chalmers Univ. of Technology, Goteborg, Sweden.
- Saadatmanesh, H., Ehsani, M.R. and Li, M.W. (1994), "Strength and ductility of concrete columns externally reinforced with fiber composite straps", ACI Struct. J., 91(4), 434-447.
- Saafi, M., Toutanji, H. and Li, Zongjin (1999), "Behavior of concrete columns confined with fiber reinforced polymer tubes", ACI Mater. J., 94(4), 500-509.
- Saatcioglu, M. and Razvi, S.R. (1992), "Strength and ductility of confined concrete", J. Struct. Eng. - ASCE, 118(6), 1590-1607. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:6(1590)
- Sakai, J., Kawashima, K., Une, H. and Yoneda, K. (2000), "Effect of tie spacing on stress-strain relation of confined concrete", J. Struct. Eng. - JSCE, 46(3), 757-766.
- Sakai, J. (2001), "Effect of lateral confinement of concrete and varying axial load on seismic response of bridges", Doctor of Engineering Dissertation, Department of Civil Engineering, Tokyo Institute of Technology, Tokyo.
- Samaan, M., Mirmiran, A. and Shahawy, M. (1998), "Model of concrete confined by fiber composites", J. Struct. Eng. - ASCE, 124(9), 1025-1031. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025)
- Spoelstra, M.R. and Monti, G. (1999), "FRP-confined concrete model", J. Compos. Constr., 3(30), 143-150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143)
Cited by
- Confining effect of concrete in double-skinned composite tubular columns vol.14, pp.5, 2014, https://doi.org/10.12989/cac.2014.14.5.613
- Software for adaptable eccentric analysis of confined concrete circular columns vol.10, pp.4, 2012, https://doi.org/10.12989/cac.2012.10.4.331
- Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming vol.162, 2016, https://doi.org/10.1016/j.compstruc.2015.09.005
- Investigation on the Sensitivity of Ultrasonic Test Applied to Reinforced Concrete Beams Using Neural Network vol.8, pp.3, 2018, https://doi.org/10.3390/app8030405
- Artificial neural network model using ultrasonic test results to predict compressive stress in concrete vol.19, pp.1, 2017, https://doi.org/10.12989/cac.2017.19.1.059
- Reliability analysis of strength models for CFRP-confined concrete cylinders vol.244, pp.None, 2020, https://doi.org/10.1016/j.compstruct.2020.112312
- Prediction of Properties of FRP-Confined Concrete Cylinders Based on Artificial Neural Networks vol.10, pp.9, 2011, https://doi.org/10.3390/cryst10090811
- Investigation of the effects of corrosion on bond strength of steel in concrete using neural network vol.28, pp.1, 2021, https://doi.org/10.12989/cac.2021.28.1.077
- Comparison of data mining methods to predict mechanical properties of concrete with fly ash and alccofine vol.15, pp.None, 2011, https://doi.org/10.1016/j.jmrt.2021.09.024
- Innovative Approach for Moment Capacity Estimation of Spirally Reinforced Concrete Columns Using Swarm Intelligence-Based Algorithms and Neural Network vol.26, pp.4, 2021, https://doi.org/10.1061/(asce)sc.1943-5576.0000612
- Forecasting Strength of CFRP Confined Concrete Using Multi Expression Programming vol.14, pp.23, 2021, https://doi.org/10.3390/ma14237134