References
- Akbarnezhad, A., Ong, K.C.G., Zhang, M.H., Tam, C.T. and Foo, T.W.J. (2011), "Microwave-assisted beneficiation of recycled concrete aggregates", Constr. Build. Mater., 25, 3469-3479. https://doi.org/10.1016/j.conbuildmat.2011.03.038
- Ayappa, K.G., Davis, H.T., Crapiste, G., Davis, E.A. and Gordon, J. (1991), "Microwave heating: an evaluation of power formulations", Chem. Eng. Sci., 64(4), 1005-1016.
- Ayers, K.W. (1998), Feasibility of recycling contaminated concrete, Environmental Engineering, Vanderbilt University, Nashville, Tennessee, United States.
- Barringer, S.A., Davis, E.A., Gordon, J., Ayappa, K.G. and Davis, H.T. (1995), "Microwave heating temperature profiles for thin slabs compared to Maxwell and Lambert's law predictions", J. Food Sci., 60(5), 1137-1142. https://doi.org/10.1111/j.1365-2621.1995.tb06309.x
- Bazant, Z.P. and Goangseup, Zi. (2003), "Decontamination of radionuclides from concrete by microwave heating. I: Theory", J. Eng Mech., 129(7),777-784. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:7(777)
- Bazant, Z.P. and Kaplan, M.F. (1996), Concrete at high temperatures: material properties and mathematical models, Harlow, Essex: Longman Group.
- Bazant, Z.P. and Thonguthai, W. (1978), "Pore pressure and drying of concrete at high temperature", J. Eng. Mech. Div. - ASCE, 104(5), 1059-1079.
- Lagos, L.E., Li, W. and Ebadian, M.A. (1995), "Heat transfer within a concrete slab with a finite microwave heating source", Int. J. Heat Mass Tran., 38(5), 887-897. https://doi.org/10.1016/0017-9310(94)00200-F
- Li, W. and Ebadian, M.A. (1994), "Heat and mass transfer in a contaminated porous concrete slab with variable dielectric properties", Int. J. Heat Mass Tran., 37(6), 1013-1027. https://doi.org/10.1016/0017-9310(94)90226-7
- Li, W., Ebadian, M.A., White, T.L. and Grubb, R.G. (1993), "Heat transfer within a concrete slab applying the microwave decontamination process", J. Heat Transfer, 115(1), 42-50. https://doi.org/10.1115/1.2910667
- Nykvist, W.E. and Decareau, R.V. (1976), "Microwave meat roasting", J. Microwave Power, 11(1), 3-24.
- Ohlsson, T. and Bengtsson, N. (1971), "Microwave heating profiles in foods-a comparison between heating experiments and computer simulation", Microw. Energy Appl. Newsl., 4(6), 3-8.
- Pozar, D.M. (1998), Microwave engineering, John Wiley & Sons.
- Rei, R.C., Prauznitz, J.M. and Poling, R.E. (1987), The properties of gases and liquids, 4th Ed., McGraw Hill, New York.
- Rhim, H.C. and Buyukozturk, O. (1998), "Electromagnetic properties of concrete at microwave frequency range", J. ACI Mater., 95(3), 262-271.
- Saltiel, G. and Datta, A.K. (1999), "Heat and mass transfer in microwave processing", Adv. Heat Trans., 33(1), 91-94.
- Spalding, B. (2000), "Volatility and extractability of Strontium-85, Cesium-134, Cobalt-57, and Uranium after heating hardened portland cement paste", Env. Sci. Tech., 34(23), 5051-5058. https://doi.org/10.1021/es001396h
- Taoukis, P., Davis, E.A., Davis, H.T., Gordon, J. and Talmon, Y. (1987), "Mathematical modeling of microwave thawing by the modified isotherm migration method", J. Food Sci., 52(2), 455-463. https://doi.org/10.1111/j.1365-2621.1987.tb06638.x
- Watson, A. (1968), Breaking of concrete, Microwave power engineering, E.C. Okress, ed, Vol. 2, Academic, New York.
- White, T.L., Foster, D. Jr., Wilson, C.T. and Schaich, C.R. (1995), Phase II: microwave concrete decontamination results, ORNL Rep. No. DE-AC05-84OR21400., Oak Ridge National Laboratory, Oak Ridge, Tenn.
- White, T.L., Grubb, R.G., Pugh L.P., Foster, D. Jr. and Box, W.D. (1992), "Removal of contaminated concrete surface by microwave heating - Phase 1 results", Proceedings of 18th American Nuclear Society Symposium on Waste Management, Tucson, AZ., American Nuclear Society, La Grange Park, Illinois, 745-748.
- Zi, Goangseup and Bazant, Z.P. (2003), "Decontamination of radionuclides from concrete by microwave heating. II: Computations", J. Eng Mech., 129(7), 785-792. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:7(785)
Cited by
- A pilot study on microwave heating for production and recycling of road pavement materials vol.44, 2013, https://doi.org/10.1016/j.conbuildmat.2013.02.082
- Sustainable Construction for Singapore's Urban Infrastructure – Some Research Findings vol.171, 2017, https://doi.org/10.1016/j.proeng.2017.01.305
- The Bearing Capacity of Reinforced Concrete Member Under Different Temperatures vol.21, pp.3, 2011, https://doi.org/10.2190/AF.21.3.d
- Theoretical and experimental analysis of wave propagation in concrete blocks subjected to impact load considering the effect of nanoparticles vol.20, pp.6, 2011, https://doi.org/10.12989/cac.2017.20.6.711