DOI QR코드

DOI QR Code

A mesoscale model for concrete to simulate mechanical failure

  • Unger, Jorg F. (Institute of Structural Mechanics, Bauhaus University Weimar) ;
  • Eckardt, Stefan (Institute of Structural Mechanics, Bauhaus University Weimar) ;
  • Konke, Carsten (Institute of Structural Mechanics, Bauhaus University Weimar)
  • 투고 : 2009.02.16
  • 심사 : 2010.08.16
  • 발행 : 2011.08.25

초록

In this paper, a mesoscale model of concrete is presented, which considers particles, matrix material and the interfacial transition zone (ITZ) as separate constituents. Particles are represented as ellipsoides, generated according to a prescribed grading curve and placed randomly into the specimen. In this context, an efficient separation procedure is used. The nonlinear behavior is simulated with a cohesive interface model for the ITZ and a combined damage/plasticity model for the matrix material. The mesoscale model is used to simulate a compression and a tensile test. Furthermore, the influence of the particle distribution on the loaddisplacement curve is investigated.

키워드

참고문헌

  1. Ananiev, S. and Ozbolt, J. (2004), "Plastic damage model for concrete in principal directions", in V. Li, C. Leung, K. Willam, & S. Billington (Eds.), Fracture Mech. Concrete Struct., 271-278.
  2. Barenblatt, G. (1962), "The mathematical theory of equilibrium of cracks in brittle fracture", Adv. Appl. Mech., 7, 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2
  3. Bazant, Z.P., Tabbara, M.R., Kazemi, M.T. and Pijaudier-Cabot, G. (1990), "Random particle model for fracture of aggregate or fiber composites", J. Eng. Mech., 116(8), 1686-1705. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686)
  4. Carol, I., Lopez, M. and Roa, O. (2002), "Micromechanical analysis of quasi-brittle materials using fracturebased interface elements", Int. J. Numer. Meth. Eng., 52(1-2), 193-215.
  5. Carol, I., Rizzi, E. and Willam, K. (2001), "On the formulation of anisotropic elastic degradation : II. Generalized pseudo-rankine model for tensile damage", Int. J. Solids Struct., 38(4), 519-546. https://doi.org/10.1016/S0020-7683(00)00031-7
  6. Carpinteri, A. and Chiaia, B. (1995), "Multifractal nature of concrete fracture surfaces and size effects on nominal fracture energy", Materiaux et Constructions, 28(182), 435-443.
  7. Chiaia, B., Vervuurt, A. and Van Mier, J. (1997), "Lattice model evaluation of progressive failure in disordered particle composites", Eng, Fract. Mech., 57(2-3), 301-318. https://doi.org/10.1016/S0013-7944(97)00011-8
  8. d'Addetta, G. A. (2002), Discrete models for cohesive fricional materials, Ph.D. thesis, University of Stuttgart, Institute for Structural Mechanics.
  9. Dugdale, D. (1960), "Yielding of sheets containing slits", J. Mech. Phy. Solids, 8, 100-104. https://doi.org/10.1016/0022-5096(60)90013-2
  10. Eckardt, S. and Konke, C. (2006), "Simulation of damage in concrete structures using multiscale methods", in N. Bianic, R. de Borst, H. Mang, & G. Meschke (Eds.), Proceedings Intern. Conf. on Computational Modelling of Concrete Structures (EURO-C 2006).
  11. Eckardt, S. and Konke, C. (2008), "Adaptive damage simulation of concrete using heterogeneous multiscale models", J. Algorithms Comput. Tech., 2(2), 275-297. https://doi.org/10.1260/174830108784646661
  12. Feldkamp, L.A., Goldstein, S.A., Parfitt, A.M., Jesion, G. and Kleerekoper, M. (1989), "The direct examination of three-dimensional bone architecture in vitro by computed tomography", J. Bone Miner. Res., 4(1), 3-11.
  13. Garboci, E. (2002), "Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: application to aggregates used in concrete", Cement Concrete Res., 32, 1621-1638. https://doi.org/10.1016/S0008-8846(02)00836-0
  14. Grassl, P. and Bazant, Z.P. (2009), "Random lattice-particle simulation of statistical size effect in quasi-brittle structures failing at crack initiation", J. Eng. Mech., 135(2), 85-92. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:2(85)
  15. URL http://link.aip.org/link/?QEM/135/85/1.
  16. Grassl, P. and Jirasek, M. (2004), "Damage-plastic model for concrete failure", Int. J. Solids Struct., 43(22-23), 7166-7196.
  17. Grassl, P. and Jirasek, M. (2006), "Plastic model with non-local damage applied to concrete", Int. J. Numer. Anal. Meth. Geomech., 30(1), 71-90. https://doi.org/10.1002/nag.479
  18. Grassl, P. and Jirasek, M. (2010), "Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension", Int. J. Solids Struct., 47(7-8), 957-968. https://doi.org/10.1016/j.ijsolstr.2009.12.010
  19. Hafner, S., Eckardt, S. and Konke, C. (2003), "A geometrical inclusion-matrix model for the finite element analysis of concrete at multiple scales", Proceedings of the 16th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, Weimar.
  20. Hafner, S., Eckardt, S., Luther, T. and Konke, C. (2006), "Mesoscale modeling of concrete: geometry and numerics", Comput. Struct., 84(7), 450-461. https://doi.org/10.1016/j.compstruc.2005.10.003
  21. Hansen, E., Willam, K. and Carol, I. (2001), "A two-surface anisotropic damage/plasticity model for plain concrete", in R. de Borst, J. Mazars, G. Pijaudier-Cabot, & J. van Mier (Eds.), Fract. Mech. Concrete Struct., 549-556.
  22. Hillerborg, A., Modeer, M. and Petersson, P. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
  23. Hollister, S.J. and Kikuchi, N. (1994), "Homogenization theory and digital imaging: a basis for studying the mechanics and design principles of bone tissue", Biotech. Bioeng., 43(7), 586-596. https://doi.org/10.1002/bit.260430708
  24. Hook, D. and McAree, P. (1990), Graphics gems, chap. Using sturm sequences to bracket real roots of polynomial equations, 416-422, San Diego, CA, USA, Academic Press Professional, Inc.
  25. Jason, L., Huerta, A., Pijaudier-Cabot, G. and Ghavamian, S. (2006), "An elastic plastic damage formulation for concrete: application to elementary tests and comparison with an isotropic damage model", Comput. Method. Appl. M., 195(52), 7077-7092. https://doi.org/10.1016/j.cma.2005.04.017
  26. Jirasek, M. (1998), "Nonlocal models for damage and fracture: comparison of approaches", Int. J. Sol. Struct., 35(31-32), 4133-4145. https://doi.org/10.1016/S0020-7683(97)00306-5
  27. Ju, J. (1989), "On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects", Int. J. Solids Struct., 25(7), 803-833. https://doi.org/10.1016/0020-7683(89)90015-2
  28. Kessler-Kramer, C. (2002), Zugtragverhalten von Beton unter Ermüdungsbeanspruchung, Ph.D. thesis, Universität Karlsruhe (TH), Germany.
  29. Krayani, A., Pijaudier-Cabot, G. and Dufour, F. (2009), "Boundary effect on weight function in nonlocal damage model", Eng. Fract. Mech., 76(14), 2217-2231. https://doi.org/10.1016/j.engfracmech.2009.07.007
  30. Leite, J., Slowik, V. and Mihashi, H. (2004), "Computer simulation of fracture processes of concrete using mesolevel models of lattice structures", Cement Concrete Res., 34(6), 1025-1033. https://doi.org/10.1016/j.cemconres.2003.11.011
  31. Leite, J.P.B., Slowik, V. and Apel, J. (2007), "Computational model of mesoscopic structure of concrete for simulation of fracture processes", Comput. Struct., 85(17-18), 1293-1303. https://doi.org/10.1016/j.compstruc.2006.08.086
  32. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic damage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  33. Nagai, G., Yamada, T. and Wada, A. (2000), "Three-dimensional nonlinear finite element analysis of the macroscopic compressive failure of concrete materials based on real digital image", Comp. Civil Build. Eng., 1, 449-456.
  34. Nagano, Y., Ikeda, Y. and Kawamoto, H. (2004), "Application of 3D X-RAY CT to stress simulation analysis of porous materials with homogenization method", in C. Miyasaka, Y. Yokono, D. Bray, & Cho (Eds.), ASME/JSME Pressure Vessels and Piping Conference, San Diego, 484, 141-146.
  35. Ortiz, M. and Pandolfi, A. (1999), "Finite-deformation irreversible cohesive elements for three-dimensional crackpropagation analysis", Int. J. Numer. Meth. Eng., 44(9), 1267-1282. https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
  36. Reuss, A. (1929), "Berechnung der $Flie{\ss}grenze$ von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle", Zeitschrift fur Angewandte Mathematikund Mechanik, 9(1), 49-58. https://doi.org/10.1002/zamm.19290090104
  37. Schlangen, E. (1993), Experimental and numerical analysis of fracture processes in concrete, Ph.D. thesis, Delft University of technology.
  38. Schlangen, E. and van Mier, J.G.M. (1992), "Simple lattice model for numerical simulation of fracture of concrete materials and structures", Mater. Struct., 25(9), 534-542. https://doi.org/10.1007/BF02472449
  39. Simo, J. and Hughes, T. (1997), Computational inelasticity, Springer-Verlag.
  40. Sukumar, N., Chopp, D., MoBes, N. and Belytschko, T. (2001), "Modelling holes and inclusions by level sets in the extended finite-element method", Comput. Method. Appl. M., 190, 6183-6200. https://doi.org/10.1016/S0045-7825(01)00215-8
  41. Takano, N., Kimura, K., Zako, M. and Kubo, F. (2003), "Multi-scale analysis and microscopic stress evaluation for ceramics considering the random microstructures", JSME Int. J. Series A - Solid M., 46(4), 527-535. https://doi.org/10.1299/jsmea.46.527
  42. Tvergaard, V. (2003), "Cohesive zone representation of failure between elastic or rigid solids and ductile solids", Eng. Fract. Mech., 70, 1859-1868. https://doi.org/10.1016/S0013-7944(03)00128-0
  43. Unger, J.F. and Konke, C. (2006), "Simulation of concrete using the extended finite element method", in N. Bicanic, R. de Borst, H. Mang, & G. Meschke (Eds.), Proceedings Int. Conf. on Computational Modelling of Concrete Structures (EURO-C 2006), 239-247, Balkema.
  44. van Vliet, M.R.A. and van Mier, J.G.M. (1995), "Softening behavior of concrete under uniaxial compression", in F. Wittman (Ed.), Fracture mechanics of concrete structures (FraMCoS-2, Zurich), 383-396.
  45. Vervuurt, A. (1997), Interface fracture in concrete, Ph.D. thesis, Delft University of technology.
  46. Wang, W., Jiaye, W. and Myung-Soo, K. (2001), "An algebraic condition for the separation of two ellipsoids", Comput. Aided Geom. D., 18(6), 531-539. https://doi.org/10.1016/S0167-8396(01)00049-8
  47. Wang, Z., Kwan, A. and Chan, H. (1999), "Mesoscopic study of concrete I: Generation of random aggregate structure and finite element mesh", Comput. Struct., 70(5), 533-544. https://doi.org/10.1016/S0045-7949(98)00177-1
  48. Wittmann, F.H., Roelfstra, P.E. and Sadouki, H. (1985), "Simulation and analysis of composite structures", Mater. Sci. Eng., 68(2), 239-248. https://doi.org/10.1016/0025-5416(85)90413-6
  49. Wriggers, P. and Moftah, S.O. (2006), "Mesoscale models for concrete: homogenisation and damage behaviour", Finite Elem. Anal. Des., 42(7), 623-636. https://doi.org/10.1016/j.finel.2005.11.008
  50. Zaitsev, Y.B. and Wittmann, F.H. (1981), "Simulation of crack propagation and failure of concrete", Mater. Struct., 14(5), 357-365.

피인용 문헌

  1. Application of molecular dynamics simulations for the generation of dense concrete mesoscale geometries vol.158, 2015, https://doi.org/10.1016/j.compstruc.2015.06.008
  2. FEM/BEM formulation for multi-scale analysis of stretched plates vol.54, 2015, https://doi.org/10.1016/j.enganabound.2015.01.005
  3. Constitutive modeling of creep-fatigue interaction for normal strength concrete under compression vol.78, 2015, https://doi.org/10.1016/j.ijfatigue.2015.03.026
  4. An FE2-X1 approach for multiscale localization phenomena vol.61, pp.4, 2013, https://doi.org/10.1016/j.jmps.2012.12.010
  5. Modeling of Cohesive Fracture and Plasticity Processes in Composite Microstructures vol.142, pp.10, 2016, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001123
  6. Modeling of unilateral effect in brittle materials by a mesoscopic scale approach vol.15, pp.5, 2015, https://doi.org/10.12989/cac.2015.15.5.735
  7. Meso-scale simulation of concrete multiaxial behaviour vol.21, pp.7-8, 2017, https://doi.org/10.1080/19648189.2016.1182085
  8. Multiscale Modeling of Concrete vol.18, pp.3, 2011, https://doi.org/10.1007/s11831-011-9063-8
  9. A concrete homogenisation technique at meso-scale level accounting for damaging behaviour of cement paste and aggregates vol.173, 2016, https://doi.org/10.1016/j.compstruc.2016.05.009
  10. Meso-Scale Simulation of Concrete Based on Fracture and Interaction Behavior vol.9, pp.15, 2019, https://doi.org/10.3390/app9152986
  11. A Review on Cementitious Self-Healing and the Potential of Phase-Field Methods for Modeling Crack-Closing and Fracture Recovery vol.13, pp.22, 2011, https://doi.org/10.3390/ma13225265
  12. Interfacial transition zones in concrete meso-scale models – Balancing physical realism and computational efficiency vol.293, pp.None, 2011, https://doi.org/10.1016/j.conbuildmat.2021.123332