참고문헌
- Altun, F., Kisi, O. and Aydin, K. (2008), "Prediction the compressive strength of steel fiber added lightweight concrete using neural network", Comp. Mater. Sci., 42, 259-265. https://doi.org/10.1016/j.commatsci.2007.07.011
- Bager, H., Geiker, R. and Jensen, M. (2001), Rheology of self-compacting mortars Influence of particle grading, Nordic Concrete Research, Publ. No. 25.
- Bonakdar, A., Bakhshi, M. and Ghalibafian, M. (2005), "Properties of high performance concrete contain high reactivity metakaolin", 7th International symposium on utilization of high strength/high performance concrete, Washington DC, USA, 228-232.
- Cussigh, F., Sonebi, M. and De Schutter, G. (2003) "Project testing SCC segregation test methods", in: O. Wallevik, I. Nielson (Eds.), Self compacting concrete, Third International RILEM Symposium, RILEM Publications, 311-322.
- EFNARK, (2005), The European guidelines for self-compacting concrete, specification, production and use.
- Emdadi, A., Mohebbi, A.R., Yekta, S., Libre, N.A. and Mahoutian, M. (2007), "Self compacting concrete incorporating high volume of raw materials", Struct. Eng. Mech. Comp., 1611-1616, Belgium.
- Emdadi, A., Libre, N.A., Mehdipour, I. and Vahdani, M. (2007), "Investigation on the parameters that influence viscosity of cement paste", Advances in Cement Based Materials and Applications to Civil Infrastructure (ACBM-ACI), Pakistan.
- Ferraris, C.F. (1999), "Measurement of the rheological properties of high performance concrete", J. Res. Natl. Inst. Stan., 104(5), 461-478. https://doi.org/10.6028/jres.104.028
- Hossain, K.M.A., Lachemi, M. and Easa, S.M. (2006), "Artificial neural network model for the strength prediction of fully restrained RC slabs subjected to membrane action", Comput. Concrete, 3(6), 439-454. https://doi.org/10.12989/cac.2006.3.6.439
- Koehler, E. and Fowler, D. (2003), "Summary of concrete workability test methods", RESEARCH REPORT ICAR-105-1, International center for aggregate research, The University of Texas, USA, 1-57.
- Lachemi, M., Hossain, K., Lambrosa, V., Nkinamubanzib, P. and Bouzoubaa, N. (2004) "Performance of new viscosity modifying admixtures in enhancing the rheological properties of cement paste", Cement Concrete Res., 34, 185-193. https://doi.org/10.1016/S0008-8846(03)00233-3
- Lachemi, M., Hossain, K., Patel, R., Shehata, M. and Bouzoubaa, N. (2007) "Influence of paste/mortar rheology on the flow characteristics of high-volume fly ash self consolidating concrete", Mag. Concrete Res., 59, 517- 528. https://doi.org/10.1680/macr.2007.59.7.517
- Lee, S. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25, 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X
- Leemann, A., Winnefeld, F. (2007), "The effect of viscosity modifying agents on mortar and concrete", Cement Concrete Comp., 29, 341-349. https://doi.org/10.1016/j.cemconcomp.2007.01.004
- Libre, N.A., Khoshnazar, R. and Shekarchi, M. (2010) "Relationship between fluidity and stability of selfconsolidating mortar incorporating chemical and mineral admixtures", Constr. Build. Mater., 24, 1262-1271. https://doi.org/10.1016/j.conbuildmat.2009.12.009
- Libre, N.A. and Vahdani, M. (2008), "Rheological properties of grout incorporating different dosage of viscosity modified agent", 3rd ACF International Conference-ACF/VCA, Vietnam.
- Lippman, R.P. (1988), "An introduction to computing with neural nets. In: Artificial neural networks", Computer Society Theoretical Concepts, Washington, 36-54.
- Okamura, H. and Ouchi, M. (2003), "Self-compacting concrete", J. Adv. Concrete Tech., 1(1), 5-15. https://doi.org/10.3151/jact.1.5
- Pala, M., Ozbay, E., Oztas, A. and Yuce, M. (2007), "Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks", Constr. Build. Mater., 21, 384-394. https://doi.org/10.1016/j.conbuildmat.2005.08.009
- Park, C.K., Noh, M.H. and Park, T.H. (2005), "Rheological properties of cementitious materials containing mineral admixtures", Cement Concrete Res., 35, 842-849. https://doi.org/10.1016/j.cemconres.2004.11.002
- Perlovsky, L.I. (2000), Neural networks and intellect: using model based concepts, Oxford University Press.
- Prasad, B., Eskandari, H. and Venkatarama, B. (2008), "Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN", Constr. Build. Mater., 23(1), 117-128.
- Roussel, N. (2006), "Correlation between yield stress and slump: comparison between numerical simulations and concrete rheometers results", Mater. Struct., 39, 501-509.
- Rafig, M., Bugmann, G. and Easterbrook, D. (2001), "Neural network design for engineering applications", Comput. Struct., 79, 1541-1552. https://doi.org/10.1016/S0045-7949(01)00039-6
- Roussel, N. and Roy, R. (2005), "The marsh cone: a test or a rheological apparatus", Cement Concrete Res., 35, 823-830. https://doi.org/10.1016/j.cemconres.2004.08.019
- Saridemir, M. (2009), "Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks", Adv. Eng. Softw., 40, 350-355. https://doi.org/10.1016/j.advengsoft.2008.05.002
- Schwartzentruber, L. Roy, R. and Cordin, J. (2006), "Rheological behavior of fresh cement pastes formulated from a Self Compacting Concrete (SCC)", Cement Concrete Res., 36, 1203-1213. https://doi.org/10.1016/j.cemconres.2004.10.036
- Svermova, L., Sonebi, M. and Bartos, P.J. (2003), "Influence of mix proportions on rheology of cement grouts containing limestone powder", Cement Concrete Comp., 25, 737-749. https://doi.org/10.1016/S0958-9465(02)00115-4
- Sonebi, M. and Cevik, A. (2009), "Genetic programming based formulation for fresh and hardened properties of self-compacting concrete containing pulverized fuel ash", Constr. Build. Mater., 23, 2614-2622. https://doi.org/10.1016/j.conbuildmat.2009.02.012
- Tang, C. (2006), "Using radial basis function neural networks to model torsional strength of reinforced concrete beams", Comput. Concrete, 3(5), 335-355. https://doi.org/10.12989/cac.2006.3.5.335
- Tang, C., Lin, Y. and Kuo, S.F. (2007), "Investigation on correlation between pulse velocity and compressive strength of concrete using ANNs", Comput. Concrete, 4(6), 477-497. https://doi.org/10.12989/cac.2007.4.6.477
- Tattersall, G. (1991), Workability a quality-control on concrete, E & FN SPON, London, pp. 262.
- Topcu, I. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comp. Mater. Sci., 41, 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009
- Wu, X. and Lim, S. (1993), Prediction maximum scour depth at the spur dikes with adaptive neural networks", Neural networks and combinatorial optimization in civil and structural engineering, Edinburgh: Civil-Comp Press, 61-66.
- Yahia, A., Tanimura, M. and Shimoyama, Y. (2005), "Rheological properties of highly flowable mortar containing limestone filler-effect of powder content and W/C ratio", Cement Concrete Res., 35, 532-539. https://doi.org/10.1016/j.cemconres.2004.05.008
- Yeh, I.C. (1998), "Modeling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
- Yeh, I.C. (2007), "Modeling slump flow of concrete using second-order regressions and artificial neural networks", Cement Concrete Comp., 29, 474-480. https://doi.org/10.1016/j.cemconcomp.2007.02.001
- Yeh, I.C. (2008), "Prediction of workability of concrete using design of experiments for mixtures", Comput. Concrete, 5(1), 1-20. https://doi.org/10.12989/cac.2008.5.1.001
- Yeh, I.C. (2008), "Modeling slump of concrete with fly ash and superplasticizer", Comput. Concrete, 5(6), 559- 572. https://doi.org/10.12989/cac.2008.5.6.559
- Yucel, K.T. (2004), "Theoretical and experimental expression of rheology of cement, mortar and concrete in fresh state", 2nd International Aegean Physical Chemistry, Turkey.
- Zarandi, F., Turksen, M., Sobhani, I. and Ramezanianpour, J. (2008), "Fuzzy polynomial neural network for approximation of the compressive strength of concrete", Appl. Soft. Comput., 8, 488-498. https://doi.org/10.1016/j.asoc.2007.02.010
피인용 문헌
- Modelling the fresh properties of self-compacting concrete using support vector machine approach vol.106, 2016, https://doi.org/10.1016/j.conbuildmat.2015.12.035
- Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams vol.11, pp.3, 2013, https://doi.org/10.12989/cac.2013.11.3.237
- Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams vol.46, pp.6, 2013, https://doi.org/10.12989/sem.2013.46.6.853
- Rheological study of cement paste with metakaolin and/or limestone filler using Mixture Design of Experiments vol.143, 2017, https://doi.org/10.1016/j.conbuildmat.2017.03.001
- Modelling the minislump spread of superplasticized PPC paste using RLS with the application of Random Kitchen sink vol.310, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/310/1/012035
- Temperature Influence on Rheology of Superplasticized Pozzolana Cement and Modeling Using RKS Algorithm vol.30, pp.9, 2018, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002406
- Modeling the Fresh and Hardened Stage Properties of Self-Compacting Concrete using Random Kitchen Sink Algorithm vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0246-7
- Plastic viscosity based mix design of self-compacting concrete with crushed rock fines vol.20, pp.4, 2017, https://doi.org/10.12989/cac.2017.20.4.461
- Influence of plastic viscosity of mix on Self-Compacting Concrete with river and crushed sand vol.23, pp.1, 2019, https://doi.org/10.12989/cac.2019.23.1.037
- Artificial neural network calculations for a receding contact problem vol.25, pp.6, 2011, https://doi.org/10.12989/cac.2020.25.6.551
- Compressive Strength Prediction of Nanosilica-Incorporated Cement Mixtures Using Adaptive Neuro-Fuzzy Inference System and Artificial Neural Network Models vol.25, pp.3, 2011, https://doi.org/10.1061/(asce)sc.1943-5576.0000499