DOI QR코드

DOI QR Code

Numerical analysis of Brazilian split test on concrete cylinder

  • Wosatko, Adam (Faculty of Civil Engineering, Cracow University of Technology) ;
  • Winnicki, Andrzej (Faculty of Civil Engineering, Cracow University of Technology) ;
  • Pamin, Jerzy (Faculty of Civil Engineering, Cracow University of Technology)
  • 투고 : 2009.06.23
  • 심사 : 2010.06.22
  • 발행 : 2011.06.25

초록

The paper presents simulations of the Brazilian test using two numerical models. Both models are regularized in order to obtain results independent of discretization. The first one, called gradient damage, is refined by additional averaging equation which contains gradient terms and an internal length scale as localization limiter. In the second one, called viscoplastic consistency model, the yield function depends on the viscoplastic strain rate. In this model regularization properties are governed by the assumed strain rate. The two models are implemented in the FEAP finite element package and compared in this paper. Parameter studies of the split test are performed in order to point out the features of each model.

키워드

참고문헌

  1. Askes, H., Pamin, J., and de Borst, R. (2000), "Dispersion analysis and element-free Galerkin solutions of second- and fourth-order gradient-enhanced damage models", Int. J. Numer. Meth. Eng., 49, 811-832. https://doi.org/10.1002/1097-0207(20001030)49:6<811::AID-NME985>3.0.CO;2-9
  2. Bicanic, N., Pearce, C.J. and Owen, D.R.J. (1994), "Failure predictions of concrete like materials using softening Hoffman plasticity model", In Mang, H., Bicanic, N., and de Borst, R., editors, Computational modelling of concrete structures, Euro-C 1994, volume 1, pages 185-198, Swansea, UK. Pineridge Press.
  3. Chen, W.F. and Chang, T.Y.P. (1978), "Plasticity solutions for concrete splitting tests", J. Eng. Mech. Div. - ASCE, 104(EM3), 691-704.
  4. Comi, C. (2001), "A non-local model with tension and compression damage mechanisms", Eur. J. Mech. A - Solids, 20(1), 1-22.
  5. de Borst, R., Pamin, J. and Geers, M.G.D. (1999), "On coupled gradient-dependent plasticity and damage theories with a view to localization analysis", Eur. J. Mech. A - Solids, 18(6), 939-962. https://doi.org/10.1016/S0997-7538(99)00114-X
  6. de Vree, J.H.P., Brekelmans, W.A.M. and van Gils, M.A.J. (1995), "Comparison of nonlocal approaches in continuum damage mechanics", Comput. Struct., 55(4), 581-588. https://doi.org/10.1016/0045-7949(94)00501-S
  7. Feenstra, P.H. (1993), Computational aspects of biaxial stress in plain and reinforced concrete, Ph.D. dissertation, Delft University of Technology, Delft.
  8. fib (1999), Structural concrete. The textbook on behaviour, design and performance, Updated knowledge of the CEB/FIP Model Code 1990, volume 1, Bulletin No 1. fib.
  9. Geers, M.G.D. (1997), Experimental analysis and computational modelling of damage and fracture, Ph.D. dissertation, Eindhoven University of Technology, Eindhoven.
  10. Heeres, O.M., Suiker, A.S.J. and de Borst, R. (2002), "A comparison between the Perzyna viscoplastic model and the Consistency viscoplastic model", Eur. J. Mech. A - Solids, 21, 1-12. https://doi.org/10.1016/S0997-7538(01)01188-3
  11. Kachanov, L.M. (1958), "Time of rupture process under creep conditions", Izd. Akad. Nauk SSSR, Otd. Tekh. Nauk, 8, 26-31. (in Russian)
  12. Kleiber, M. (1998), "Plasticity problems", Kleiber, M., editor, Handbook of Computational Mechanics, Survey and Comparison of Contemporary Methods, pages 201-252, Berlin, Germany, Springer Verlag.
  13. Kupfer, H. (1973), Das Verhalten des Betons unter mehrachsiger Kurzzeitbelastung under besonderer Berücksichtigung der zweiachsigen Beanspruchung, Heft 229, Deutscher Ausschuss für Stahlbeton, Berlin.
  14. Lemaitre, J. (1971), "Evaluation of dissipation and damage in metals", Proc. I.C.M., volume 1, Kyoto, Japan.
  15. Lopez, C.M., Carol, I. and Aguado, A. (2008), "Meso-structural study of concrete fracture using interface elements. II: Compression, biaxial and Brazilian test", Mater. Struct., 41, 601-620. https://doi.org/10.1617/s11527-007-9312-3
  16. Mazars, J. and Pijaudier-Cabot, G. (1989), "Continuum damage theory - application to concrete", J. Eng. Mech. - ASCE, 115, 345-365 https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345)
  17. Pamin, J., Wosatko, A. and Winnicki, A. (2003), "Two- and three-dimensional gradient damage-plasticity simulations of cracking in concrete", In Bicanic , N. et al., editors, Proc. EURO-C 2003 Int. Conf. Computational Modelling of Concrete Structures, pages 325-334, Rotterdam/Brookfield. A.A. Balkema.
  18. Pearce, C.J. (1993), Computational aspects of the softening Hoffman plasticity model for quasi-brittle solids, M.Sc., University Of Wales, College Swansea.
  19. Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M. and de Vree, J.H.P. (1996), "Gradient-enhanced damage for quasi-brittle materials", Int. J. Numer. Meth. Eng., 39, 3391-3403. https://doi.org/10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
  20. Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M. and Geers, M.G.D. (1998), "Gradient-enhanced damage modelling of concrete fracture", Mech. Cohes.-frict. Mater., 3, 323-342. https://doi.org/10.1002/(SICI)1099-1484(1998100)3:4<323::AID-CFM51>3.0.CO;2-Z
  21. Perzyna, P. (1966), "Fundamental problems in viscoplasticity", Recent Advances in Applied Mechanics, volume 9, pages 243-377, New York, USA. Academic Press.
  22. Reinhardt, H.W. (1984), "Fracture mechanics of an elastic softening material like concrete", Heron, 29(2).
  23. Rocco, C., Guinea, G.V., Planas, J. and Elices, M. (1999), "Mechanisms of rupture in splitting tests", ACI Mater. J., 96, 52-60.
  24. Rocco, C., Guinea, G.V., Planas, J. and Elices, M. (2001), "Review of the splitting-test standards from a fracture mechanics point of view", Cement Concrete Res., 31, 73-82. https://doi.org/10.1016/S0008-8846(00)00425-7
  25. Rodriguez-Ferran, A. and Huerta, A. (2001), "Failure and post-failure modelling of the Brazilian test", Bletzinger, K.U., Schweizerhof, K. and Wall, W., editors, Conf. on Trends in Computational Structural Mechanics, pages 189-197, Barcelona, CIMNE.
  26. Ruiz, G., Ortiz, M. and Pandolfi, A. (2000), "Three-dimensional finite-element simulation of the dynamic Brazilian tests on concrete cylinders", Int. J. Numer. Meth. Eng., 48, 963-994. https://doi.org/10.1002/(SICI)1097-0207(20000710)48:7<963::AID-NME908>3.0.CO;2-X
  27. Simo, J.C. and Hughes, T.J.R. (1997), Computational inelasticity, Springer Verlag, New York, Berlin.
  28. Simo, J.C. and Ju, J.W. (1987), "Strain- and stress-based continuum damage models - I. Formulation, II. Computational aspects", Int. J. Solids Struct., 23(7), 821-869. https://doi.org/10.1016/0020-7683(87)90083-7
  29. Suaris, W. and Shah, S.P. (1985), "Constitutive model for dynamic loading of concrete", J. Struct. Eng. - ASCE, 111(3), 563-576. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:3(563)
  30. Taylor, R.L. (2001), FEAP - A finite element analysis program, Version 7.4, User manual, Technical report, University of California at Berkeley, Berkeley.
  31. van Mier, J.G.M. (1984), Strain-softening of concrete under multiaxial loading conditions, Ph.D. dissertation, Eindhoven University of Technology, Eindhoven.
  32. Vonk, R.A. (1992), Softening of concrete loaded in compression, Ph.D. dissertation, Eindhoven University of Technology, Eindhoven.
  33. Wang, W.M. (1997), Stationary and propagative instabilities in metals - a computational point of view, Ph.D. dissertation, Delft University of Technology, Delft.
  34. Winnicki, A. (2001), "Viscoplastic consistency model - basic features", Waszczyszyn, Z. and Pamin, J., editors, European Conf. on Computational Mechanics ECCM-2001, Cracow, Cracow University of Technology.
  35. Winnicki, A. (2007), Viscoplastic and internal discontinuity models in analysis of structural concrete, Series Civil Engineering, Monograph 349, Cracow University of Technology, Cracow.
  36. Winnicki, A., Pearce, C.J. and Bicanic, N. (2001), Viscoplastic Hoffman consistency model for concrete, Comput. Struct., 79, 7-19. https://doi.org/10.1016/S0045-7949(00)00110-3
  37. Zyczkowski, M. (1981), Combined loadings in the theory of plasticity, PWN - Polish Stientific Publishers, Warszawa.

피인용 문헌

  1. Comparison of measurement uncertainty calculation methods on example of indirect tensile strength measurement vol.12, pp.6, 2011, https://doi.org/10.12989/gae.2017.12.6.871
  2. On the Calibration of a Numerical Model for Concrete-to-Concrete Interface vol.14, pp.23, 2021, https://doi.org/10.3390/ma14237204