DOI QR코드

DOI QR Code

Variables affecting strain sensing function in cementitious composites with carbon fibers

  • Baeza, F.J. (Dpto. de Ingenieria de la Construccion, Universidad de Alicante) ;
  • Zornoza, E. (Dpto. de Ingenieria de la Construccion, Universidad de Alicante) ;
  • Andion, L.G. (Dpto. de Ingenieria de la Construccion, Universidad de Alicante) ;
  • Ivorra, S. (Dpto. de Ingenieria de la Construccion, Universidad de Alicante) ;
  • Garces, P. (Dpto. de Ingenieria de la Construccion, Universidad de Alicante)
  • 투고 : 2008.10.01
  • 심사 : 2010.07.12
  • 발행 : 2011.04.25

초록

In this work, cement paste samples with 1% (by cement mass) of a conductive carbon fiber admixture have been studied under uniaxial compression. Three different arrangements were used to measure the resistivity of the samples. According to the results obtained, the resistance should be measured using the four wire method in order to obtain good sensitivity and repeatability. The effect of the load value and the load rate on the fractional change of the volume resistivity has been determined. It has been observed that the gage factor (fractional change in resistance respect to strain) increases when the maximum load is increased, and the loading rate does not affect significantly this parameter. The effect of the sample ambient humidity on the material piezoresistivity has also been studied, showing that the response of the composite is highly affected by this parameter.

키워드

참고문헌

  1. Alcaide, J.S., Alcocel, E.G., Puertas, F., Lapuente, R. and Garces, P. (2007), "Carbon-fibre reinforced, alkaliactivated slag mortars", Materiales de Construccion, 57, 33-48.
  2. Alcaide, J.S., Alcocel, E.G., Vilaplana, E. and Garces, P. (2007), "Mechanical characterization of Portland cement mortars containing petroleum or coal tar", Materiales de Construcción, 57, 53-62.
  3. Cabeza, M., Merino, P., Novoa, X.R. and Sanchez, I. (2003), "Electrical effects generated by mechanical loading of hardened Portland cement paste", Cement Concrete Comp., 25(3), 351-356. https://doi.org/10.1016/S0958-9465(02)00053-7
  4. Cao, J. and Chung, D.D.L. (2004), "Electric polarization and depolarization in cement-based materials, studied by apparent electrical resistance measurement", Cement Concrete Res., 34(3), 481-485. https://doi.org/10.1016/j.cemconres.2003.09.003
  5. Chen, P.W. and Chung, D.D.L. (1996), "Concrete as a new strain/stress sensor", Compos. Part B, 27, 11-23. https://doi.org/10.1016/1359-8368(95)00002-X
  6. Chen, P.W. and Chung, D.D.L. (1993), "Carbon fiber reinforced concrete as a smart material capable of nondestructive flaw detection", Smart Mater. Struct., 2, 22-30. https://doi.org/10.1088/0964-1726/2/1/004
  7. Chung, D.D.L. (2001), "Functional properties of cement-matrix composites", J. Mater. Sci., 36(6), 1315-1324. https://doi.org/10.1023/A:1017522616006
  8. Chung, D.D.L. (2002), "Piezoresistive cement-based materials for strain sensing", J. Intell. Mate. Syst. Struct., 13(9), 599-609. https://doi.org/10.1106/104538902031861
  9. Chung, D.D.L. (2005), "Dispersion of short fibers in cement", J. Mater. Civil. Eng., 17(4), 379-383. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:4(379)
  10. Garces, P., Andion, L.G., Varga, I., Catala, G. and Zornoza, E. (2007), "Corrosion of steel reinforcement in structural concrete with carbon material addition", Corros. Sci., 49, 2557-2566. https://doi.org/10.1016/j.corsci.2006.12.009
  11. Garces, P., Fraile, J., Vilaplana-Ortego, E., Cazorla, D. and Andion, L.G. (2005), "Effect of carbon fibers on the mechanical properties and corrosion levels of reinforced Portland cement mortars", Cement Concrete Res., 35, 324-331. https://doi.org/10.1016/j.cemconres.2004.05.013
  12. Katsikeros, C.E. and Labeas, G.N. (2009), "Development and validation of a strain-based structural health monitoring system", Mech. Syst. Signal Pr., 23(2), 372-383. https://doi.org/10.1016/j.ymssp.2008.03.006
  13. Reza, F., Batson, G.B., Yamamuro, J.A. and Lee, J.S. (2003), "Resistance changes during compression of carbon fiber cement composites", J. Mater. Civil. Eng., 15(5), 476-483. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(476)
  14. Shen, C., Lin, X. and Shi, Y. (2006), "Moving objects tracking under varying ilumination conditions", Int. J. Pattern Recogn., 27, 1632-1643. https://doi.org/10.1016/j.patrec.2006.03.010
  15. Song, G., Sethi, V. and Li, H.N. (2006), "Vibration control of civil structures using piezoceramic smart materials: a review", Eng. Struct., 28(11), 1513-1524. https://doi.org/10.1016/j.engstruct.2006.02.002
  16. Spencer, Jr. B.F., Ruiz-Sandoval, M.E. and Kurata, N. (2004), "Smart sensory technology: opportunities and challenges", Struct. Control Health Monitor., 11(4), 349-368. https://doi.org/10.1002/stc.48
  17. Wang, X.J. and Chung, D.D.L. (1998), "Short carbon fiber reinforced epoxy coating as a piezoresistive strain sensor for cement mortar", Sensor. Actuat. A - Phys., 71(3), 208-212. https://doi.org/10.1016/S0924-4247(98)00187-3
  18. Wen, S. and Chung, D.D.L. (2001), "Uniaxial compression in carbon fiber reinforced cement, sensed by electrical resistivity measurement in longitudinal and transverse directions", Cement Concrete Res., 31(2), 297- 301. https://doi.org/10.1016/S0008-8846(00)00438-5
  19. Wen, S. and Chung, D.D.L. (2005), "Strain sensing characteristics of carbon fiber-reinforced cement", ACI Mater. J., 102(4), 244-248.
  20. Wen, S. and Chung, D.D.L. (2006), "The role of electronic and ionic conduction in the electrical conductivity of carbon fiber reinforced cement", Carbon, 44(11), 2130-2138. https://doi.org/10.1016/j.carbon.2006.03.013
  21. Wen, S. and Chung, D.D.L. (2007), "Piezoresistivity-based strain sensing in carbon fiber reinforced cement", ACI Mater. J., 104(2), 171-179.
  22. Wen, S.H. and Chung, D.D.L. (1999), "Piezoresistivity in continuous carbon fiber cement-matrix composites", Cement Concrete Res., 29(3), 445-449. https://doi.org/10.1016/S0008-8846(98)00211-7
  23. Wen, S.H. and Chung, D.D.L. (2003), "A comparative study of steel- and carbon-fibre cement as piezoresistive strain sensors", Adv. Cement Res., 15(3), 119-128. https://doi.org/10.1680/adcr.2003.15.3.119
  24. Wen, S.H. and Chung, D.D.L. (2006), "Effects of strain and damage on strain-sensing ability of carbon fiber cement", J. Mater. Civil. Eng., 18(3), 355-360. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(355)
  25. Wen, S.H. and Chung, D.D.L. (2006), "Model of piezoresistivity in carbon fiber cement", Cement Concrete Res., 36(10), 1879-1885. https://doi.org/10.1016/j.cemconres.2006.03.029
  26. Wu, B., Huang, X.J. and Lu, J.Z. (2005), "Biaxial compression in carbon-fiber-reinforced mortar, sensed by electrical resistance measurement", Cement Concrete Res., 35(7), 1430-1434. https://doi.org/10.1016/j.cemconres.2004.07.023
  27. Yao, W., Chen, B. and Wu, K. (2003), "Smart behavior of carbon fiber reinforced cement-based composite", J. Mater. Sci. Tech., 19(3), 239-243. https://doi.org/10.1179/026708303225009364
  28. Ye, Y., Tsotsos, J.K., Harley, E. and Bennet, K. (2000), "Tracking a person with prerecorded image databse and a pan, tilt, and zoom camera", Mach. Vision Appl., 12, 32-43. https://doi.org/10.1007/s001380050122

피인용 문헌

  1. Multifunctional Cement Composites Strain and Damage Sensors Applied on Reinforced Concrete (RC) Structural Elements vol.6, pp.3, 2013, https://doi.org/10.3390/ma6030841
  2. Self-Sensing Properties of Alkali Activated Blast Furnace Slag (BFS) Composites Reinforced with Carbon Fibers vol.6, pp.12, 2013, https://doi.org/10.3390/ma6104776
  3. Estudio de la sensibilidad a su propia deformación de escorias de alto horno activadas alcalinamente y reforzadas con fibra de carbono 2017, https://doi.org/10.1016/j.hya.2017.04.008
  4. Effect of aspect ratio on strain sensing capacity of carbon fiber reinforced cement composites vol.51, 2013, https://doi.org/10.1016/j.matdes.2013.05.010
  5. Highly Conductive Carbon Fiber Reinforced Concrete for Icing Prevention and Curing vol.9, pp.12, 2016, https://doi.org/10.3390/ma9040281
  6. Mechanical properties of alkali activated blast furnace slag pastes reinforced with carbon fibers vol.116, 2016, https://doi.org/10.1016/j.conbuildmat.2016.04.066
  7. Performance of cement-based sensors with CNT for strain sensing vol.28, pp.4, 2016, https://doi.org/10.1680/adcr.14.00120
  8. Intrinsic self-sensing concrete and structures: A review vol.59, 2015, https://doi.org/10.1016/j.measurement.2014.09.048
  9. Electrical percolation threshold of cementitious composites possessing self-sensing functionality incorporating different carbon-based materials vol.25, pp.10, 2016, https://doi.org/10.1088/0964-1726/25/10/105005
  10. Self-heating and deicing conductive cement. Experimental study and modeling vol.75, 2015, https://doi.org/10.1016/j.conbuildmat.2014.11.042
  11. Feasibility of electrochemical chloride extraction from structural reinforced concrete using a sprayed conductive graphite powder–cement paste as anode vol.77, 2013, https://doi.org/10.1016/j.corsci.2013.07.035
  12. Strain and damage sensing properties on multifunctional cement composites with CNF admixture vol.46, 2014, https://doi.org/10.1016/j.cemconcomp.2013.11.009
  13. Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression vol.7, pp.12, 2017, https://doi.org/10.3390/nano7120413
  14. Theoretical and experimental investigation of piezoresistivity of brass fiber reinforced concrete vol.23, pp.6, 2011, https://doi.org/10.12989/cac.2019.23.6.399
  15. Self-sensing concrete made from recycled carbon fibres vol.28, pp.10, 2011, https://doi.org/10.1088/1361-665x/ab3d59
  16. A Multichannel Strain Measurement Technique for Nanomodified Smart Cement-Based Sensors in Reinforced Concrete Structures vol.21, pp.16, 2011, https://doi.org/10.3390/s21165633
  17. Cross tension and compression loading and large-scale testing of strain and damage sensing smart concrete vol.316, pp.None, 2022, https://doi.org/10.1016/j.conbuildmat.2021.125784